Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

afex

Analysis of Factorial Experiments

Convenience functions for analyzing factorial experiments using ANOVA or mixed models. aov_ez(), aov_car(), and aov_4() allow specification of between, within (i.e., repeated-measures), or mixed (i.e., split-plot) ANOVAs for data in long format (i.e., one observation per row), automatically aggregating multiple observations per individual and cell of the design. mixed() fits mixed models using lme4::lmer() and computes p-values for all fixed effects using either Kenward-Roger or Satterthwaite approximation for degrees of freedom (LMM only), parametric bootstrap (LMMs and GLMMs), or likelihood ratio tests (LMMs and GLMMs). afex_plot() provides a high-level interface for interaction or one-way plots using ggplot2, combining raw data and model estimates. afex uses type 3 sums of squares as default (imitating commercial statistical software).

Functions (26)

afex

Analysis of Factorial Experiments

v0.28-1
GPL (>= 2)
Authors
Henrik Singmann [aut, cre] (<https://orcid.org/0000-0002-4842-3657>), Ben Bolker [aut], Jake Westfall [aut], Frederik Aust [aut] (<https://orcid.org/0000-0003-4900-788X>), Mattan S. Ben-Shachar [aut], Søren Højsgaard [ctb], John Fox [ctb], Michael A. Lawrence [ctb], Ulf Mertens [ctb], Jonathon Love [ctb], Russell Lenth [ctb], Rune Haubo Bojesen Christensen [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.