Scale microarray data
Normalizes arrays using loess.
normalize.loess(mat, subset = sample(1:(dim(mat)[1]), min(c(5000,
                 nrow(mat)))), epsilon = 10^-2, maxit = 1, log.it =
                 TRUE, verbose = TRUE, span = 2/3, family.loess =
                 "symmetric")
normalize.AffyBatch.loess(abatch,type=c("together","pmonly","mmonly","separate"), ...)mat | 
 a matrix with columns containing the values of the chips to normalize.  | 
abatch | 
 an   | 
subset | 
 a subset of the data to fit a loess to.  | 
epsilon | 
 a tolerance value (supposed to be a small value - used as a stopping criterion).  | 
maxit | 
 maximum number of iterations.  | 
log.it | 
 logical. If   | 
verbose | 
 logical. If   | 
span | 
 parameter to be passed the function   | 
family.loess | 
 parameter to be passed the function
  | 
type | 
 A string specifying how the normalization should be applied. See details for more.  | 
... | 
 any of the options of normalize.loess you would like to modify (described above).  | 
The type argument should be one of
"separate","pmonly","mmonly","together" which indicates whether
to normalize only one probe type (PM,MM) or both together or separately.
if (require(affydata)) {
  #data(Dilution)
  #x <- pm(Dilution[,1:3])
  #mva.pairs(x)
  #x <- normalize.loess(x,subset=1:nrow(x))
  #mva.pairs(x)
}Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.