Home ranges
Functions to calculate animal home ranges from a track_xy*
, and to work
with home ranges. hr_mcp
, hr_kde
, and hr_locoh
calculate the minimum convex
polygon, kernel density, and local convex hull home range respectively. hr_area
extracts the
area of an home range, hr_isopleths
returns the isopleth as a
SpatialPolygonsDataFrame
.
hr_akde(x, ...) ## S3 method for class 'track_xyt' hr_akde( x, model = fit_ctmm(x, "iid"), keep.data = TRUE, trast = make_trast(x), levels = 0.95, ... ) hr_area(x, ...) ## S3 method for class 'hr' hr_area(x, units = FALSE, ...) ## S3 method for class 'akde' hr_area(x, units = FALSE, ...) hr_isopleths(x, ...) hr_kde(x, ...) ## S3 method for class 'track_xy' hr_kde( x, h = hr_kde_ref(x), trast = make_trast(x), levels = 0.95, keep.data = TRUE, ... ) hr_kde_ref(x, ...) ## S3 method for class 'track_xy' hr_kde_ref(x, rescale = "none", ...) hr_kde_pi(x, ...) ## S3 method for class 'track_xy' hr_kde_pi(x, rescale = "none", correct = TRUE, ...) hr_kde_lscv( x, range = do.call(seq, as.list(c(hr_kde_ref(x) * c(0.1, 2), length.out = 100))), which_min = "global", rescale = "none", trast = raster(as_sp(x), nrow = 100, ncol = 100) ) hr_locoh(x, ...) ## S3 method for class 'track_xy' hr_locoh( x, n = 10, type = "k", levels = 0.95, keep.data = TRUE, rand_buffer = 1e-05, ... ) hr_mcp(x, ...) ## S3 method for class 'track_xy' hr_mcp(x, levels = 0.95, keep.data = TRUE, ...) hr_od(x, ...) ## S3 method for class 'track_xyt' hr_od( x, model = fit_ctmm(x, "iid"), keep.data = TRUE, trast = make_trast(x), levels = 0.95, ... )
x |
|
... |
Further arguments, none implemented. |
model |
A continuous time movement model. This can be fitted either with |
keep.data |
|
trast |
|
levels |
|
units |
|
h |
|
rescale |
|
correct |
Logical scalar that indicates whether or not the estimate should be correct for the two dimensional case. |
range |
numeric vector with different candidate h values. |
which_min |
A character indicating if the |
n |
|
type |
|
rand_buffer |
|
The implementation of the reference bandwidth calculation is based on Worton (1989). If variances differ greatly, it is advisable to rescale the data using rescale = "unitvar"
the data is suspected to multimodal other bandwidth estimation methods may be more suitable.
hr_kde_lscv
calculates least square cross validation bandwidth. This implementation is based on Seaman and Powell (1996). If whichMin
is "global"
the global minimum is returned, else the local minimum with the largest candidate bandwidth is returned.
The bandwidth, the standardization method and correction.
vector
of length two
C. H. Fleming, W. F. Fagan, T. Mueller, K. A. Olson, P. Leimgruber, J. M. Calabrese, “Rigorous home-range estimation with movement data: A new autocorrelated kernel-density estimator”, Ecology, 96:5, 1182-1188 (2015).
Worton, B. J. (1989). Kernel methods for estimating the utilization distribution in home-range studies. Ecology, 70(1), 164-168.
Gitzen, R. A., Millspaugh, J. J., & Kernohan, B. J. (2006). Bandwidth selection for fixed-kernel analysis of animal utilization distributions. Journal of Wildlife Management, 70(5), 1334-1344.
Seaman, D. E., & Powell, R. A. (1996). An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology, 77(7), 2075-2085.
Fleming, C. H., Fagan, W. F., Mueller, T., Olson, K. A., Leimgruber, P., & Calabrese, J. M. (2016). Estimating where and how animals travel: an optimal framework for path reconstruction from autocorrelated tracking data. Ecology, 97(3), 576-582.
KernSmooth::dpik
# akde ## Not run: data(deer) ud1 <- hr_akde(deer) # uses an iid ctmm ud2 <- hr_akde(deer, model = fit_ctmm(deer, "ou")) # uses an OU ctmm ## End(Not run) data(deer) mini_deer <- deer[1:100, ] # MCP --------------------------------------------------------------------- mcp1 <- hr_mcp(mini_deer) hr_area(mcp1) # calculated MCP at different levels mcp1 <- hr_mcp(mini_deer, levels = seq(0.3, 1, 0.1)) hr_area(mcp1) # CRS are inherited get_crs(mini_deer) mcps <- hr_mcp(mini_deer, levels = c(0.5, 0.95, 1)) has_crs(mcps) # Local Convex Hull (LoCoH) ----------------------------------------------- locoh1 <- hr_locoh(mini_deer) hr_area(locoh1) # calculated Locoh at different levels locoh <- hr_locoh(mini_deer, levels = seq(0.3, 1, 0.1)) hr_area(locoh) # Kernel density estimaiton (KDE) ----------------------------------------- kde1 <- hr_kde(mini_deer) hr_area(kde1) get_crs(kde1) # od ## Not run: data(deer) ud1 <- hr_od(deer) # uses an iid ctmm ud2 <- hr_akde(deer, model = fit_ctmm(deer, "ou")) # uses an OU ctmm ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.