Count the number of observations at each location.
This is a variant geom_point
that counts the number of
observations at each location, then maps the count to point size. It
useful when you have discrete data.
geom_count( mapping = NULL, data = NULL, stat = "sum", position = "identity", ..., na.rm = FALSE, show.legend = NA, inherit.aes = TRUE ) stat_sum( mapping = NULL, data = NULL, geom = "point", position = "identity", ..., na.rm = FALSE, show.legend = NA, inherit.aes = TRUE )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
position |
Position adjustment, either as a string, or the result of a call to a position adjustment function. |
... |
other arguments passed on to |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
geom, stat |
Use to override the default connection between
|
geom_point
understands the following aesthetics (required aesthetics are in bold):
x
y
alpha
colour
fill
shape
size
stroke
number of observations at position
percent of points in that panel at that position
ggplot(mpg, aes(cty, hwy)) + geom_point() ggplot(mpg, aes(cty, hwy)) + geom_count() # Best used in conjunction with scale_size_area which ensures that # counts of zero would be given size 0. Doesn't make much different # here because the smallest count is already close to 0. ggplot(mpg, aes(cty, hwy)) + geom_count() scale_size_area() # Display proportions instead of counts ------------------------------------- # By default, all categorical variables in the plot form the groups. # Specifying geom_count without a group identifier leads to a plot which is # not useful: d <- ggplot(diamonds, aes(x = cut, y = clarity)) d + geom_count(aes(size = ..prop..)) # To correct this problem and achieve a more desirable plot, we need # to specify which group the proportion is to be calculated over. d + geom_count(aes(size = ..prop.., group = 1)) + scale_size_area(max_size = 10) # Or group by x/y variables to have rows/columns sum to 1. d + geom_count(aes(size = ..prop.., group = cut)) + scale_size_area(max_size = 10) d + geom_count(aes(size = ..prop.., group = clarity)) + scale_size_area(max_size = 10)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.