Generic Function to Run ‘mcmcsamp()’ in lme4
The quick function for MCMC sampling for lmer and glmer objects and convert to Bugs objects for easy display.
## Default S3 method: mcsamp(object, n.chains=3, n.iter=1000, n.burnin=floor(n.iter/2), n.thin=max(1, floor(n.chains * (n.iter - n.burnin)/1000)), saveb=TRUE, deviance=TRUE, make.bugs.object=TRUE) ## S4 method for signature 'merMod' mcsamp(object, ...)
object |
|
n.chains |
number of MCMC chains |
n.iter |
number of iteration for each MCMC chain |
n.burnin |
number of burnin for each MCMC chain,
Default is |
n.thin |
keep every kth draw from each MCMC chain. Must be a positive integer.
Default is |
saveb |
if 'TRUE', causes the values of the random effects in each sample to be saved. |
deviance |
compute deviance for |
make.bugs.object |
tranform the output into bugs object, default is TRUE |
... |
further arguments passed to or from other methods. |
This function generates a sample from the posterior
distribution of the parameters of a fitted model using Markov
Chain Monte Carlo methods. It automatically simulates multiple
sequences and allows convergence to be monitored. The function relies on
mcmcsamp
in lme4
.
An object of (S3) class '"bugs"' suitable for use with the functions in the "R2WinBUGS" package.
Andrew Gelman gelman@stat.columbia.edu; Yu-Sung Su ys463@columbia.edu
Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006.
Douglas Bates and Deepayan Sarkar, lme4: Linear mixed-effects models using S4 classes.
## Here's a simple example of a model of the form, y = a + bx + error, ## with 10 observations in each of 10 groups, and with both the intercept ## and the slope varying by group. First we set up the model and data. ## # group <- rep(1:10, rep(10,10)) # group2 <- rep(1:10, 10) # mu.a <- 0 # sigma.a <- 2 # mu.b <- 3 # sigma.b <- 4 # rho <- 0.56 # Sigma.ab <- array (c(sigma.a^2, rho*sigma.a*sigma.b, # rho*sigma.a*sigma.b, sigma.b^2), c(2,2)) # sigma.y <- 1 # ab <- mvrnorm (10, c(mu.a,mu.b), Sigma.ab) # a <- ab[,1] # b <- ab[,2] # d <- rnorm(10) # # x <- rnorm (100) # y1 <- rnorm (100, a[group] + b*x, sigma.y) # y2 <- rbinom(100, 1, prob=invlogit(a[group] + b*x)) # y3 <- rnorm (100, a[group] + b[group]*x + d[group2], sigma.y) # y4 <- rbinom(100, 1, prob=invlogit(a[group] + b*x + d[group2])) # ## ## Then fit and display a simple varying-intercept model: # # M1 <- lmer (y1 ~ x + (1|group)) # display (M1) # M1.sim <- mcsamp (M1) # print (M1.sim) # plot (M1.sim) ## ## Then the full varying-intercept, varying-slope model: ## # M2 <- lmer (y1 ~ x + (1 + x |group)) # display (M2) # M2.sim <- mcsamp (M2) # print (M2.sim) # plot (M2.sim) ## ## Then the full varying-intercept, logit model: ## # M3 <- lmer (y2 ~ x + (1|group), family=binomial(link="logit")) # display (M3) # M3.sim <- mcsamp (M3) # print (M3.sim) # plot (M3.sim) ## ## Then the full varying-intercept, varying-slope logit model: ## # M4 <- lmer (y2 ~ x + (1|group) + (0+x |group), # family=binomial(link="logit")) # display (M4) # M4.sim <- mcsamp (M4) # print (M4.sim) # plot (M4.sim) # ## ## Then non-nested varying-intercept, varying-slop model: ## # M5 <- lmer (y3 ~ x + (1 + x |group) + (1|group2)) # display(M5) # M5.sim <- mcsamp (M5) # print (M5.sim) # plot (M5.sim)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.