Multiple Comparison Plot
Plots significant difference of simulated array.
multicomp.plot(object, alpha = 0.05, main = "Multiple Comparison Plot", label = NULL, shortlabel = NULL, show.pvalue = FALSE, label.as.shortlabel = FALSE, label.on.which.axis = 3, col.low = "lightsteelblue", col.same = "white", col.high = "lightslateblue", vertical.line = TRUE, horizontal.line = FALSE, vertical.line.lty = 1, horizontal.line.lty = 1, mar=c(3.5,3.5,3.5,3.5))
object |
Simulated array of coefficients, columns being different variables and rows being simulated result. |
alpha |
Level of significance to compare. |
main |
Main label. |
label |
Labels for simulated parameters. |
shortlabel |
Short labels to put into the plot. |
show.pvalue |
Default is FALSE, if set to TRUE replaces short label with Bayesian p value. |
label.as.shortlabel |
Default is FALSE, if set to TRUE takes first 2 character of label and use it as short label. |
label.on.which.axis |
default is the 3rd (top) axis. |
col.low |
Color of significantly low coefficients. |
col.same |
Color of not significant difference. |
col.high |
Color of significantly high coefficients. |
vertical.line |
Default is TRUE, if set to FALSE does not draw vertical line. |
horizontal.line |
Default is FALSE, if set to TRUE draws horizontal line. |
vertical.line.lty |
Line type of vertical line. |
horizontal.line.lty |
Line type of horizontal line. |
mar |
A numerical vector of the form |
pvalue |
Array of Bayesian p value. |
significant |
Array of significance. |
Masanao Yajima yajima@stat.columbia.edu, Andrew Gelman gelman@stat.columbia.edu
Andrew Gelman and Jennifer Hill. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
old.par <- par(no.readonly = TRUE) # example 1 simulation.array <- data.frame(coef1=rnorm(100,10,2), coef2=rnorm(100,5,2), coef3=rnorm(100,0,1), coef4=rnorm(100,-5,3), coef5=rnorm(100,-2,1)) short.lab <- c("c01", "c02", "c03", "c04", "c05") multicomp.plot(simulation.array[,1:4], label.as.shortlabel=TRUE) # wraper for multicomp.plot mcplot(simulation.array, shortlabel = short.lab) # example 2 data(lalonde) M1 <- lm(re78 ~ treat + re74 + re75 + age + educ + u74 + u75, data=lalonde) M1.sim <- sim(M1) lm.sim <- coef(M1.sim)[,-1] multicomp.plot(lm.sim, label.as.shortlabel=TRUE, label.on.which.axis=2) par(old.par)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.