Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

random_parameter_sampling

Define random sampling over a hyperparameter search space


Description

In random sampling, hyperparameter values are randomly selected from the defined search space. Random sampling allows the search space to include both discrete and continuous hyperparameters.

Usage

random_parameter_sampling(parameter_space, properties = NULL)

Arguments

parameter_space

A named list containing each parameter and its distribution, e.g. list("parameter" = distribution).

properties

A named list of additional properties for the algorithm.

Value

The RandomParameterSampling object.

Details

In this sampling algorithm, parameter values are chosen from a set of discrete values or a distribution over a continuous range. Functions you can use include: choice(), randint(), uniform(), quniform(), loguniform(), qloguniform(), normal(), qnormal(), lognormal(), and qlognormal().

See Also

choice(), randint(), uniform(), quniform(), loguniform(), qloguniform(), normal(), qnormal(), lognormal(), qlognormal()

Examples

## Not run: 
param_sampling <- random_parameter_sampling(list("learning_rate" = normal(10, 3),
                                                 "keep_probability" = uniform(0.05, 0.1),
                                                 "batch_size" = choice(c(16, 32, 64, 128))))

## End(Not run)

azuremlsdk

Interface to the 'Azure Machine Learning' 'SDK'

v1.10.0
MIT + file LICENSE
Authors
Diondra Peck [cre, aut], Minna Xiao [aut], AzureML R SDK Team [ctb], Microsoft [cph, fnd], Google Inc. [cph] (Examples and Tutorials), The TensorFlow Authors [cph] (Examples and Tutorials), RStudio Inc. [cph] (Examples and Tutorials)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.