MCMC Algorithm for Negative Binomial Regression
rnegbinRw
implements a Random Walk Metropolis Algorithm for the Negative Binomial (NBD) regression model where β|α and α|β are drawn with two different random walks.
rnegbinRw(Data, Prior, Mcmc)
Data |
list(y, X) |
Prior |
list(betabar, A, a, b) |
Mcmc |
list(R, keep, nprint, s_beta, s_alpha, beta0, alpha) |
y ~ NBD(mean=λ, over-dispersion=alpha)
λ = exp(x'β)
β ~ N(betabar, A^{-1})
alpha ~ Gamma(a, b) (unless Mcmc$alpha
specified)
Note: prior mean of alpha = a/b, variance = a/(b^2)
Data = list(y, X)
y: |
n x 1 vector of counts (0,1,2,…) |
X: |
n x k design matrix |
Prior = list(betabar, A, a, b)
[optional]
betabar: |
k x 1 prior mean (def: 0) |
A: |
k x k PDS prior precision matrix (def: 0.01*I) |
a: |
Gamma prior parameter (not used if Mcmc$alpha specified) (def: 0.5) |
b: |
Gamma prior parameter (not used if Mcmc$alpha specified) (def: 0.1)
|
Mcmc = list(R, keep, nprint, s_beta, s_alpha, beta0, alpha)
[only R
required]
R: |
number of MCMC draws |
keep: |
MCMC thinning parameter -- keep every keep th draw (def: 1) |
nprint: |
print the estimated time remaining for every nprint 'th draw (def: 100, set to 0 for no print) |
s_beta: |
scaling for beta | alpha RW inc cov matrix (def: 2.93/sqrt(k) ) |
s_alpha: |
scaling for alpha | beta RW inc cov matrix (def: 2.93) |
alpha: |
over-dispersion parameter (def: alpha ~ Gamma(a,b)) |
A list containing:
betadraw |
R/keep x k matrix of beta draws |
alphadraw |
R/keep x 1 vector of alpha draws |
llike |
R/keep x 1 vector of log-likelihood values evaluated at each draw |
acceptrbeta |
acceptance rate of the beta draws |
acceptralpha |
acceptance rate of the alpha draws |
The NBD regression encompasses Poisson regression in the sense that as alpha goes to infinity the NBD distribution tends toward the Poisson. For "small" values of alpha, the dependent variable can be extremely variable so that a large number of observations may be required to obtain precise inferences.
Sridhar Narayanan (Stanford GSB) and Peter Rossi (Anderson School, UCLA), perossichi@gmail.com.
For further discussion, see Bayesian Statistics and Marketing by Rossi, Allenby, McCulloch.
http://www.perossi.org/home/bsm-1
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=1000} else {R=10} set.seed(66) simnegbin = function(X, beta, alpha) { # Simulate from the Negative Binomial Regression lambda = exp(X%*%beta) y = NULL for (j in 1:length(lambda)) { y = c(y, rnbinom(1, mu=lambda[j], size=alpha)) } return(y) } nobs = 500 nvar = 2 # Number of X variables alpha = 5 Vbeta = diag(nvar)*0.01 # Construct the regdata (containing X) simnegbindata = NULL beta = c(0.6, 0.2) X = cbind(rep(1,nobs), rnorm(nobs,mean=2,sd=0.5)) simnegbindata = list(y=simnegbin(X,beta,alpha), X=X, beta=beta) Data1 = simnegbindata Mcmc1 = list(R=R) out = rnegbinRw(Data=Data1, Mcmc=list(R=R)) cat("Summary of alpha/beta draw", fill=TRUE) summary(out$alphadraw, tvalues=alpha) summary(out$betadraw, tvalues=beta) ## plotting examples if(0){plot(out$betadraw)}
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.