Describe Posterior Distributions
Compute indices relevant to describe and characterize the posterior distributions.
describe_posterior( posteriors, centrality = "median", dispersion = FALSE, ci = 0.95, ci_method = "hdi", test = c("p_direction", "rope"), rope_range = "default", rope_ci = 0.95, ... ) ## S3 method for class 'numeric' describe_posterior( posteriors, centrality = "median", dispersion = FALSE, ci = 0.95, ci_method = "hdi", test = c("p_direction", "rope"), rope_range = "default", rope_ci = 0.95, bf_prior = NULL, BF = 1, ... ) ## S3 method for class 'stanreg' describe_posterior( posteriors, centrality = "median", dispersion = FALSE, ci = 0.95, ci_method = "hdi", test = c("p_direction", "rope"), rope_range = "default", rope_ci = 0.95, bf_prior = NULL, diagnostic = c("ESS", "Rhat"), priors = FALSE, effects = c("fixed", "random", "all"), component = c("location", "all", "conditional", "smooth_terms", "sigma", "distributional", "auxiliary"), parameters = NULL, BF = 1, ... ) ## S3 method for class 'stanmvreg' describe_posterior( posteriors, centrality = "median", dispersion = FALSE, ci = 0.95, ci_method = "hdi", test = "p_direction", rope_range = "default", rope_ci = 0.95, bf_prior = NULL, diagnostic = c("ESS", "Rhat"), priors = FALSE, effects = c("fixed", "random", "all"), component = c("location", "all", "conditional", "smooth_terms", "sigma", "distributional", "auxiliary"), parameters = NULL, ... ) ## S3 method for class 'brmsfit' describe_posterior( posteriors, centrality = "median", dispersion = FALSE, ci = 0.95, ci_method = "hdi", test = c("p_direction", "rope"), rope_range = "default", rope_ci = 0.95, bf_prior = NULL, diagnostic = c("ESS", "Rhat"), effects = c("fixed", "random", "all"), component = c("conditional", "zi", "zero_inflated", "all", "location", "distributional", "auxiliary"), parameters = NULL, BF = 1, priors = FALSE, ... ) ## S3 method for class 'MCMCglmm' describe_posterior( posteriors, centrality = "median", dispersion = FALSE, ci = 0.95, ci_method = "hdi", test = c("p_direction", "rope"), rope_range = "default", rope_ci = 0.95, diagnostic = "ESS", parameters = NULL, ... ) ## S3 method for class 'BFBayesFactor' describe_posterior( posteriors, centrality = "median", dispersion = FALSE, ci = 0.95, ci_method = "hdi", test = c("p_direction", "rope", "bf"), rope_range = "default", rope_ci = 0.95, priors = TRUE, verbose = TRUE, ... )
posteriors |
A vector, data frame or model of posterior draws. |
centrality |
The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: |
dispersion |
Logical, if |
ci |
Value or vector of probability of the CI (between 0 and 1)
to be estimated. Default to |
ci_method |
The type of index used for Credible Interval. Can be
|
test |
The indices of effect existence to compute. Character (vector) or
list with one or more of these options: |
rope_range |
ROPE's lower and higher bounds. Should be a list of two
values (e.g., |
rope_ci |
The Credible Interval (CI) probability, corresponding to the proportion of HDI, to use for the percentage in ROPE. |
... |
Additional arguments to be passed to or from methods. |
bf_prior |
Distribution representing a prior for the computation of Bayes factors / SI. Used if the input is a posterior, otherwise (in the case of models) ignored. |
BF |
The amount of support required to be included in the support interval. |
diagnostic |
Diagnostic metrics to compute. Character (vector) or list with one or more of these options: |
priors |
Add the prior used for each parameter. |
effects |
Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated. |
component |
Should results for all parameters, parameters for the conditional model or the zero-inflated part of the model be returned? May be abbreviated. Only applies to brms-models. |
parameters |
Regular expression pattern that describes the parameters that
should be returned. Meta-parameters (like |
verbose |
Toggle off warnings. |
One or more components of point estimates (like posterior mean or median),
intervals and tests can be omitted from the summary output by setting the
related argument to NULL
. For example, test = NULL
and
centrality = NULL
would only return the HDI (or CI).
library(bayestestR) if (require("logspline")) { x <- rnorm(1000) describe_posterior(x) describe_posterior(x, centrality = "all", dispersion = TRUE, test = "all") describe_posterior(x, ci = c(0.80, 0.90)) df <- data.frame(replicate(4, rnorm(100))) describe_posterior(df) describe_posterior(df, centrality = "all", dispersion = TRUE, test = "all") describe_posterior(df, ci = c(0.80, 0.90)) } ## Not run: # rstanarm models # ----------------------------------------------- if (require("rstanarm") && require("emmeans")) { model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0) describe_posterior(model) describe_posterior(model, centrality = "all", dispersion = TRUE, test = "all") describe_posterior(model, ci = c(0.80, 0.90)) # emmeans estimates # ----------------------------------------------- describe_posterior(emtrends(model, ~1, "wt")) } # brms models # ----------------------------------------------- if (require("brms")) { model <- brms::brm(mpg ~ wt + cyl, data = mtcars) describe_posterior(model) describe_posterior(model, centrality = "all", dispersion = TRUE, test = "all") describe_posterior(model, ci = c(0.80, 0.90)) } # BayesFactor objects # ----------------------------------------------- if (require("BayesFactor")) { bf <- ttestBF(x = rnorm(100, 1, 1)) describe_posterior(bf) describe_posterior(bf, centrality = "all", dispersion = TRUE, test = "all") describe_posterior(bf, ci = c(0.80, 0.90)) } ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.