Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

diagnostic_draws

Diagnostic values for each iteration


Description

Returns the accumulated log-posterior, the average Metropolis acceptance rate, divergent transitions, treedepth rather than terminated its evolution normally.

Usage

diagnostic_draws(posteriors, ...)

Arguments

posteriors

A stanreg or brms model.

...

Currently not used.

Examples

set.seed(333)

if (require("brms", quietly = TRUE)) {
  model <- brm(mpg ~ wt * cyl * vs, data = mtcars,
               iter = 100, control = list(adapt_delta = 0.80),
               refresh = 0)
  diagnostic_draws(model)
}

bayestestR

Understand and Describe Bayesian Models and Posterior Distributions

v0.10.0
GPL-3
Authors
Dominique Makowski [aut, cre] (<https://orcid.org/0000-0001-5375-9967>, @Dom_Makowski), Daniel Lüdecke [aut] (<https://orcid.org/0000-0002-8895-3206>, @strengejacke), Mattan S. Ben-Shachar [aut] (<https://orcid.org/0000-0002-4287-4801>, @mattansb), Indrajeet Patil [aut] (<https://orcid.org/0000-0003-1995-6531>, @patilindrajeets), Michael D. Wilson [aut] (<https://orcid.org/0000-0003-4143-7308>), Paul-Christian Bürkner [rev], Tristan Mahr [rev] (<https://orcid.org/0000-0002-8890-5116>), Henrik Singmann [ctb] (<https://orcid.org/0000-0002-4842-3657>), Quentin F. Gronau [ctb] (<https://orcid.org/0000-0001-5510-6943>), Sam Crawley [ctb] (<https://orcid.org/0000-0002-7847-0411>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.