Density Estimation
This function is a wrapper over different methods of density estimation. By default, it uses the base R density
with by default uses a different smoothing bandwidth ("SJ"
) from the legacy default implemented the base R density
function ("nrd0"
). However, Deng \& Wickham suggest that method = "KernSmooth"
is the fastest and the most accurate.
estimate_density( x, method = "kernel", precision = 2^10, extend = FALSE, extend_scale = 0.1, bw = "SJ", ... ) ## S3 method for class 'data.frame' estimate_density( x, method = "kernel", precision = 2^10, extend = FALSE, extend_scale = 0.1, bw = "SJ", ci = NULL, group_by = NULL, ... )
x |
Vector representing a posterior distribution, or a data frame of such
vectors. Can also be a Bayesian model ( |
method |
Density estimation method. Can be |
precision |
Number of points of density data. See the |
extend |
Extend the range of the x axis by a factor of |
extend_scale |
Ratio of range by which to extend the x axis. A value of |
bw |
See the eponymous argument in |
... |
Currently not used. |
ci |
The confidence interval threshold. Only used when |
group_by |
Optional character vector. If not |
There is also a plot()
-method implemented in the see-package.
Deng, H., & Wickham, H. (2011). Density estimation in R. Electronic publication.
library(bayestestR) set.seed(1) x <- rnorm(250, mean = 1) # Basic usage density_kernel <- estimate_density(x) # default method is "kernel" hist(x, prob = TRUE) lines(density_kernel$x, density_kernel$y, col = "black", lwd = 2) lines(density_kernel$x, density_kernel$CI_low, col = "gray", lty = 2) lines(density_kernel$x, density_kernel$CI_high, col = "gray", lty = 2) legend("topright", legend = c("Estimate", "95% CI"), col = c("black", "gray"), lwd = 2, lty = c(1, 2) ) # Other Methods density_logspline <- estimate_density(x, method = "logspline") density_KernSmooth <- estimate_density(x, method = "KernSmooth") density_mixture <- estimate_density(x, method = "mixture") hist(x, prob = TRUE) lines(density_kernel$x, density_kernel$y, col = "black", lwd = 2) lines(density_logspline$x, density_logspline$y, col = "red", lwd = 2) lines(density_KernSmooth$x, density_KernSmooth$y, col = "blue", lwd = 2) lines(density_mixture$x, density_mixture$y, col = "green", lwd = 2) # Extension density_extended <- estimate_density(x, extend = TRUE) density_default <- estimate_density(x, extend = FALSE) hist(x, prob = TRUE) lines(density_extended$x, density_extended$y, col = "red", lwd = 3) lines(density_default$x, density_default$y, col = "black", lwd = 3) # Multiple columns df <- data.frame(replicate(4, rnorm(100))) head(estimate_density(df)) # Grouped data estimate_density(iris, group_by = "Species") estimate_density(iris$Petal.Width, group_by = iris$Species) ## Not run: # rstanarm models # ----------------------------------------------- library(rstanarm) model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0) head(estimate_density(model)) library(emmeans) head(estimate_density(emtrends(model, ~1, "wt"))) # brms models # ----------------------------------------------- library(brms) model <- brms::brm(mpg ~ wt + cyl, data = mtcars) estimate_density(model) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.