Point-estimates of posterior distributions
Compute various point-estimates, such as the mean, the median or the MAP, to describe posterior distributions.
point_estimate(x, centrality = "all", dispersion = FALSE, ...) ## S3 method for class 'numeric' point_estimate(x, centrality = "all", dispersion = FALSE, threshold = 0.1, ...) ## S3 method for class 'stanreg' point_estimate( x, centrality = "all", dispersion = FALSE, effects = c("fixed", "random", "all"), component = c("location", "all", "conditional", "smooth_terms", "sigma", "distributional", "auxiliary"), parameters = NULL, ... ) ## S3 method for class 'brmsfit' point_estimate( x, centrality = "all", dispersion = FALSE, effects = c("fixed", "random", "all"), component = c("conditional", "zi", "zero_inflated", "all"), parameters = NULL, ... ) ## S3 method for class 'BFBayesFactor' point_estimate(x, centrality = "all", dispersion = FALSE, ...)
x |
Vector representing a posterior distribution, or a data frame of such
vectors. Can also be a Bayesian model ( |
centrality |
The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: |
dispersion |
Logical, if |
... |
Additional arguments to be passed to or from methods. |
threshold |
For |
effects |
Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated. |
component |
Should results for all parameters, parameters for the conditional model or the zero-inflated part of the model be returned? May be abbreviated. Only applies to brms-models. |
parameters |
Regular expression pattern that describes the parameters that
should be returned. Meta-parameters (like |
There is also a plot()
-method implemented in the see-package.
library(bayestestR) point_estimate(rnorm(1000)) point_estimate(rnorm(1000), centrality = "all", dispersion = TRUE) point_estimate(rnorm(1000), centrality = c("median", "MAP")) df <- data.frame(replicate(4, rnorm(100))) point_estimate(df, centrality = "all", dispersion = TRUE) point_estimate(df, centrality = c("median", "MAP")) ## Not run: # rstanarm models # ----------------------------------------------- library(rstanarm) model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars) point_estimate(model, centrality = "all", dispersion = TRUE) point_estimate(model, centrality = c("median", "MAP")) # emmeans estimates # ----------------------------------------------- library(emmeans) point_estimate(emtrends(model, ~1, "wt"), centrality = c("median", "MAP")) # brms models # ----------------------------------------------- library(brms) model <- brms::brm(mpg ~ wt + cyl, data = mtcars) point_estimate(model, centrality = "all", dispersion = TRUE) point_estimate(model, centrality = c("median", "MAP")) # BayesFactor objects # ----------------------------------------------- library(BayesFactor) bf <- ttestBF(x = rnorm(100, 1, 1)) point_estimate(bf, centrality = "all", dispersion = TRUE) point_estimate(bf, centrality = c("median", "MAP")) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.