Data Simulation
Simulate data with specific characteristics.
simulate_correlation(n = 100, r = 0.5, mean = 0, sd = 1, names = NULL, ...) simulate_ttest(n = 100, d = 0.5, names = NULL, ...) simulate_difference(n = 100, d = 0.5, names = NULL, ...)
n |
The number of observations to be generated. |
r |
A value or vector corresponding to the desired correlation coefficients. |
mean |
A value or vector corresponding to the mean of the variables. |
sd |
A value or vector corresponding to the SD of the variables. |
names |
A character vector of desired variable names. |
... |
Arguments passed to or from other methods. |
d |
A value or vector corresponding to the desired difference between the groups. |
# Correlation -------------------------------- data <- simulate_correlation(r = 0.5) plot(data$V1, data$V2) cor.test(data$V1, data$V2) summary(lm(V2 ~ V1, data = data)) # Specify mean and SD data <- simulate_correlation(r = 0.5, n = 50, mean = c(0, 1), sd = c(0.7, 1.7)) cor.test(data$V1, data$V2) round(c(mean(data$V1), sd(data$V1)), 1) round(c(mean(data$V2), sd(data$V2)), 1) summary(lm(V2 ~ V1, data = data)) # Generate multiple variables cor_matrix <- matrix(c( 1.0, 0.2, 0.4, 0.2, 1.0, 0.3, 0.4, 0.3, 1.0 ), nrow = 3 ) data <- simulate_correlation(r = cor_matrix, names = c("y", "x1", "x2")) cor(data) summary(lm(y ~ x1, data = data)) # t-test -------------------------------- data <- simulate_ttest(n = 30, d = 0.3) plot(data$V1, data$V0) round(c(mean(data$V1), sd(data$V1)), 1) diff(t.test(data$V1 ~ data$V0)$estimate) summary(lm(V1 ~ V0, data = data)) summary(glm(V0 ~ V1, data = data, family = "binomial")) # Difference -------------------------------- data <- simulate_difference(n = 30, d = 0.3) plot(data$V1, data$V0) round(c(mean(data$V1), sd(data$V1)), 1) diff(t.test(data$V1 ~ data$V0)$estimate) summary(lm(V1 ~ V0, data = data)) summary(glm(V0 ~ V1, data = data, family = "binomial"))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.