Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

hivif

Simulated Linear Regression (Train) with Nine Highly Correlated Inputs


Description

The script that generated this data is given below.

Usage

data("hivif")

Format

A data frame with 1000 observations on the following 10 variables.

x1

a numeric vector

x2

a numeric vector

x3

a numeric vector

x4

a numeric vector

x5

a numeric vector

x6

a numeric vector

x7

a numeric vector

x8

a numeric vector

x9

a numeric vector

y

a numeric vector

Examples

#Simple example
data(hivif)
lm(y ~ ., data=hivif)
#
#This example shows how the original data was simulated and
#how additional test data may be simulated.
## Not run: 
 set.seed(778851) #needed for original training data
 n <- 100
 p <- 9 #9 covariates plus intercept
 sig <- toeplitz(0.9^(0:(p-1)))
 X <- MASS::mvrnorm(n=n, rep(0, p), Sigma=sig)
 colnames(X) <- paste0("x", 1:p)
 b <- c(0,-0.3,0,0,-0.3,0,0,0.3,0.3) #
 names(b) <- paste0("x", 1:p)
 y <- 1 +  X
 Xy <- cbind(as.data.frame.matrix(X), y=y) #=hivif
#Test data
 nTe <- 10^3
 XTe <- MASS::mvrnorm(n=nTe, rep(0, p), Sigma=sig)
 colnames(XTe) <- paste0("x", 1:p)
  yTe <- 1 +  XTe
 XyTe <- cbind(as.data.frame.matrix(XTe), y=yTe) #test data
 ans <- lm(y ~ ., data=Xy) #fit training data
 mean((XyTe$y - predict(ans, newdata=XyTe))^2) #MSE on test data
 
## End(Not run)

bestglm

Best Subset GLM and Regression Utilities

v0.37.3
GPL (>= 2)
Authors
A.I. McLeod, Changjiang Xu and Yuanhao Lai
Initial release
2020-03-13

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.