Bounded memory linear regression
bigglm
creates a generalized linear model object that uses only
p^2
memory for p
variables.
bigglm(formula, data, family=gaussian(),...) ## S3 method for class 'data.frame' bigglm(formula, data,...,chunksize=5000) ## S3 method for class 'function' bigglm(formula, data, family=gaussian(), weights=NULL, sandwich=FALSE, maxit=8, tolerance=1e-7, start=NULL,quiet=FALSE,...) ## S3 method for class 'RODBC' bigglm(formula, data, family=gaussian(), tablename, ..., chunksize=5000) ## S4 method for signature 'ANY,DBIConnection' bigglm(formula, data, family=gaussian(), tablename, ..., chunksize=5000) ## S3 method for class 'bigglm' vcov(object,dispersion=NULL, ...) ## S3 method for class 'bigglm' deviance(object,...) ## S3 method for class 'bigglm' family(object,...) ## S3 method for class 'bigglm' AIC(object,...,k=2)
formula |
A model formula |
data |
See Details below. Method dispatch is on this argument |
family |
A glm family object |
chunksize |
Size of chunks for processng the data frame |
weights |
A one-sided, single term formula specifying weights |
sandwich |
|
maxit |
Maximum number of Fisher scoring iterations |
tolerance |
Tolerance for change in coefficient (as multiple of standard error) |
start |
Optional starting values for coefficients. If
|
object |
A |
dispersion |
Dispersion parameter, or |
tablename |
For the |
k |
penalty per parameter for AIC |
quiet |
When |
... |
Additional arguments |
The data
argument may be a function, a data frame, or a
SQLiteConnection
or RODBC
connection object.
When it is a function the function must take a single argument
reset
. When this argument is FALSE
it returns a data
frame with the next chunk of data or NULL
if no more data are
available. Whenreset=TRUE
it indicates that the data should be
reread from the beginning by subsequent calls. The chunks need not be
the same size or in the same order when the data are reread, but the
same data must be provided in total. The bigglm.data.frame
method gives an example of how such a function might be written,
another is in the Examples below.
The model formula must not contain any data-dependent terms, as these will not be consistent when updated. Factors are permitted, but the levels of the factor must be the same across all data chunks (empty factor levels are ok). Offsets are allowed (since version 0.8).
The SQLiteConnection
and RODBC
methods loads only the
variables needed for the model, not the whole table. The code in the
SQLiteConnection
method should work for other DBI
connections, but I do not have any of these to check it with.
An object of class bigglm
Algorithm AS274 Applied Statistics (1992) Vol.41, No. 2
biglm
, glm
data(trees) ff<-log(Volume)~log(Girth)+log(Height) a <- bigglm(ff,data=trees, chunksize=10, sandwich=TRUE) summary(a) gg<-log(Volume)~log(Girth)+log(Height)+offset(2*log(Girth)+log(Height)) b <- bigglm(gg,data=trees, chunksize=10, sandwich=TRUE) summary(b) ## Not run: ## requires internet access make.data<-function(urlname, chunksize,...){ conn<-NULL function(reset=FALSE){ if(reset){ if(!is.null(conn)) close(conn) conn<<-url(urlname,open="r") } else{ rval<-read.table(conn, nrows=chunksize,...) if (nrow(rval)==0) { close(conn) conn<<-NULL rval<-NULL } return(rval) } } } airpoll<-make.data("http://faculty.washington.edu/tlumley/NO2.dat", chunksize=150, col.names=c("logno2","logcars","temp","windsp", "tempgrad","winddir","hour","day")) b<-bigglm(exp(logno2)~logcars+temp+windsp, data=airpoll, family=Gamma(log), start=c(2,0,0,0),maxit=10) summary(b) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.