Shannon Entropy Score
Calculate the sequence entropy score for every position in an alignment.
entropy(alignment)
alignment |
sequence alignment returned from
|
Shannon's information theoretic entropy (Shannon, 1948) is an often-used measure of residue diversity and hence residue conservation.
Returns a list with five components:
H |
standard entropy score for a 22-letter alphabet. |
H.10 |
entropy score for a 10-letter alphabet (see below). |
H.norm |
normalized entropy score (for 22-letter alphabet), so that conserved (low entropy) columns (or positions) score 1, and diverse (high entropy) columns score 0. |
H.10.norm |
normalized entropy score (for 10-letter alphabet), so that conserved (low entropy) columns score 1 and diverse (high entropy) columns score 0. |
freq |
residue frequency matrix containing percent occurrence values for each residue type. |
In addition to the standard entropy score (based on a 22-letter
alphabet of the 20 standard amino-acids, plus a gap character ‘-’
and a mask character ‘X’), an entropy score, H.10
, based on
a 10-letter alphabet is also returned.
For H.10
, residues from the 22-letter alphabet are classified
into one of 10 types, loosely following the convention of Mirny and
Shakhnovich (1999):
Hydrophobic/Aliphatic [V,I,L,M],
Aromatic [F,W,Y],
Ser/Thr [S,T],
Polar [N,Q],
Positive [H,K,R],
Negative [D,E],
Tiny [A,G],
Proline [P],
Cysteine [C], and
Gaps [-,X].
The residue code ‘X’ is useful for handling non-standard aminoacids.
Barry Grant
Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.
Shannon (1948) The System Technical J. 27, 379–422.
Mirny and Shakhnovich (1999) J. Mol. Biol. 291, 177–196.
# Read HIV protease alignment aln <- read.fasta(system.file("examples/hivp_xray.fa",package="bio3d")) # Entropy and consensus h <- entropy(aln) con <- consensus(aln) names(h$H)=con$seq print(h$H) # Entropy for sub-alignment (positions 1 to 20) h.sub <- entropy(aln$ali[,1:20]) # Plot entropy and residue frequencies (excluding positions >=60 percent gaps) H <- h$H.norm H[ apply(h$freq[21:22,],2,sum)>=0.6 ] = 0 col <- mono.colors(32) aa <- rev(rownames(h$freq)) oldpar <- par(no.readonly=TRUE) layout(matrix(c(1,2),2,1,byrow = TRUE), widths = 7, heights = c(2, 8), respect = FALSE) # Plot 1: entropy par(mar = c(0, 4, 2, 2)) barplot(H, border="white", ylab = "Entropy", space=0, xlim=c(3.7, 97.3),yaxt="n" ) axis(side=2, at=c(0.2,0.4, 0.6, 0.8)) axis(side=3, at=(seq(0,length(con$seq),by=5)-0.5), labels=seq(0,length(con$seq),by=5)) box() # Plot2: residue frequencies par(mar = c(5, 4, 0, 2)) image(x=1:ncol(con$freq), y=1:nrow(con$freq), z=as.matrix(rev(as.data.frame(t(con$freq)))), col=col, yaxt="n", xaxt="n", xlab="Alignment Position", ylab="Residue Type") axis(side=1, at=seq(0,length(con$seq),by=5)) axis(side=2, at=c(1:22), labels=aa) axis(side=3, at=c(1:length(con$seq)), labels =con$seq) axis(side=4, at=c(1:22), labels=aa) grid(length(con$seq), length(aa)) box() for(i in 1:length(con$seq)) { text(i, which(aa==con$seq[i]),con$seq[i],col="white") } abline(h=c(3.5, 4.5, 5.5, 3.5, 7.5, 9.5, 12.5, 14.5, 16.5, 19.5), col="gray") par(oldpar)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.