Normal Mode Analysis
Perform normal mode analysis (NMA) on either a single or an ensemble of protein structures.
nma(...)
Normal mode analysis (NMA) is a computational approach for studying and characterizing protein flexibility. Current functionality entails normal modes calculation on either a single protein structure or an ensemble of aligned protein structures.
This generic nma
function calls the corresponding
methods for the actual calculation, which is determined by the class
of the input argument:
Function nma.pdb
will be used when the input argument is
of class pdb
. The function calculates the normal modes of a
C-alpha model of a protein structure.
Function nma.pdbs
will be used when the input argument is
of class pdbs
. The function will perform normal mode analysis
of each PDB structure stored in the pdbs
object
(‘ensemble NMA’).
See documentation and examples for each corresponding function for more details.
Lars Skjaerven
Skjaerven, L. et al. (2014) BMC Bioinformatics 15, 399. Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.
##- Singe structure NMA ## Fetch stucture pdb <- read.pdb( system.file("examples/1hel.pdb", package="bio3d") ) ## Calculate normal modes modes <- nma(pdb) ## Print modes print(modes) ## Plot modes plot(modes) ## Visualize modes #m7 <- mktrj.nma(modes, mode=7, file="mode_7.pdb") ## Needs MUSCLE installed - testing excluded ##- Ensemble NMA if(check.utility("muscle")) { ## Fetch PDB files and split to chain A only PDB files ids <- c("1a70_A", "1czp_A", "1frd_A", "1fxi_A", "1iue_A", "1pfd_A") files <- get.pdb(ids, split = TRUE, path = tempdir()) ## Sequence Alignement pdbs <- pdbaln(files, outfile = tempfile()) ## Normal mode analysis on aligned data modes <- nma(pdbs, rm.gaps=FALSE) ## Plot fluctuation data plot(modes, pdbs=pdbs) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.