Posterior Predictive Checks for brmsfit Objects
Perform posterior predictive checks with the help of the bayesplot package.
## S3 method for class 'brmsfit' pp_check( object, type, nsamples, group = NULL, x = NULL, newdata = NULL, resp = NULL, subset = NULL, ... )
object |
An object of class |
type |
Type of the ppc plot as given by a character string.
See |
nsamples |
Positive integer indicating how many
posterior samples should be used.
If |
group |
Optional name of a factor variable in the model
by which to stratify the ppc plot. This argument is required for
ppc |
x |
Optional name of a variable in the model.
Only used for ppc types having an |
newdata |
An optional data.frame for which to evaluate predictions. If
|
resp |
Optional names of response variables. If specified, predictions are performed only for the specified response variables. |
subset |
A numeric vector specifying the posterior samples to be used.
If |
... |
Further arguments passed to |
A ggplot object that can be further customized using the ggplot2 package.
## Not run: fit <- brm(count ~ zAge + zBase * Trt + (1|patient) + (1|obs), data = epilepsy, family = poisson()) pp_check(fit) # shows dens_overlay plot by default pp_check(fit, type = "error_hist", nsamples = 11) pp_check(fit, type = "scatter_avg", nsamples = 100) pp_check(fit, type = "stat_2d") pp_check(fit, type = "rootogram") pp_check(fit, type = "loo_pit") ## get an overview of all valid types pp_check(fit, type = "xyz") ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.