Identify the variable corresponding to each model coefficient
tidy_identify_variables()
will add to the tidy tibble
three additional columns: variable
, var_class
, var_type
and var_nlevels
.
tidy_identify_variables(x, model = tidy_get_model(x), quiet = FALSE)
x |
a tidy tibble |
model |
the corresponding model, if not attached to |
quiet |
logical argument whether broom.helpers should not return a message when requested output cannot be generated. Default is FALSE |
It will also identify interaction terms and intercept(s).
var_type
could be:
"continuous"
,
"dichotomous"
(categorical variable with 2 levels),
"categorical"
(categorical variable with 3 levels or more),
"intercept"
"interaction"
"ran_pars
(random-effect parameters for mixed models)
"ran_vals"
(random-effect values for mixed models)
"unknown"
in the rare cases where tidy_identify_variables()
will fail to identify the list of variables
For dichotomous and categorical variables, var_nlevels
corresponds to the number
of original levels in the corresponding variables.
Other tidy_helpers:
tidy_add_coefficients_type()
,
tidy_add_contrasts()
,
tidy_add_estimate_to_reference_rows()
,
tidy_add_header_rows()
,
tidy_add_n()
,
tidy_add_reference_rows()
,
tidy_add_term_labels()
,
tidy_add_variable_labels()
,
tidy_attach_model()
,
tidy_disambiguate_terms()
,
tidy_plus_plus()
,
tidy_remove_intercept()
,
tidy_select_variables()
Titanic %>% dplyr::as_tibble() %>% dplyr::mutate(Survived = factor(Survived, c("No", "Yes"))) %>% glm(Survived ~ Class + Age * Sex, data = ., weights = .$n, family = binomial) %>% tidy_and_attach() %>% tidy_identify_variables() lm( Sepal.Length ~ poly(Sepal.Width, 2) + Species, data = iris, contrasts = list(Species = contr.sum) ) %>% tidy_and_attach(conf.int = TRUE) %>% tidy_identify_variables()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.