Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

augment.htest

Augment data with information from a(n) htest object


Description

Augment accepts a model object and a dataset and adds information about each observation in the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in the .resid column, and standard errors for the fitted values in a .se.fit column. New columns always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user passes data to the data argument, it must be exactly the data that was used to fit the model object. Pass datasets to newdata to augment data that was not used during model fitting. This still requires that at least all predictor variable columns used to fit the model are present. If the original outcome variable used to fit the model is not included in newdata, then no .resid column will be included in the output.

Augment will often behave differently depending on whether data or newdata is given. This is because there is often information associated with training observations (such as influences or related) measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment(fit) will return the augmented training data. In these cases, augment tries to reconstruct the original data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the passed dataset. This means that the passed data must be coercible to a tibble. At this time, tibbles do not support matrix-columns. This means you should not specify a matrix of covariates in a model formula during the original model fitting process, and that splines::ns(), stats::poly() and survival::Surv() objects are not supported in input data. If you encounter errors, try explicitly passing a tibble, or fitting the original model on data in a tibble.

We are in the process of defining behaviors for models fit with various na.action arguments, but make no guarantees about behavior when data is missing at this time.

Usage

## S3 method for class 'htest'
augment(x, ...)

Arguments

x

An htest objected, such as those created by stats::cor.test(), stats::t.test(), stats::wilcox.test(), stats::chisq.test(), etc.

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Additionally, if you pass newdata = my_tibble to an augment() method that does not accept a newdata argument, it will use the default value for the data argument.

Details

See stats::chisq.test() for more details on how residuals are computed.

Value

A tibble::tibble() with exactly one row and columns:

.observed

Observed count.

.prop

Proportion of the total.

.row.prop

Row proportion (2 dimensions table only).

.col.prop

Column proportion (2 dimensions table only).

.expected

Expected count under the null hypothesis.

.resid

Pearson residuals.

.std.resid

Standardized residual.

See Also

Other htest tidiers: tidy.htest(), tidy.pairwise.htest(), tidy.power.htest()

Examples

tt <- t.test(rnorm(10))
tidy(tt)
glance(tt) # same output for all htests

tt <- t.test(mpg ~ am, data = mtcars)
tidy(tt)

wt <- wilcox.test(mpg ~ am, data = mtcars, conf.int = TRUE, exact = FALSE)
tidy(wt)

ct <- cor.test(mtcars$wt, mtcars$mpg)
tidy(ct)

chit <- chisq.test(xtabs(Freq ~ Sex + Class, data = as.data.frame(Titanic)))
tidy(chit)
augment(chit)

broom

Convert Statistical Objects into Tidy Tibbles

v0.7.10
MIT + file LICENSE
Authors
David Robinson [aut], Alex Hayes [aut] (<https://orcid.org/0000-0002-4985-5160>), Simon Couch [aut, cre] (<https://orcid.org/0000-0001-5676-5107>), Indrajeet Patil [ctb] (<https://orcid.org/0000-0003-1995-6531>), Derek Chiu [ctb], Matthieu Gomez [ctb], Boris Demeshev [ctb], Dieter Menne [ctb], Benjamin Nutter [ctb], Luke Johnston [ctb], Ben Bolker [ctb], Francois Briatte [ctb], Jeffrey Arnold [ctb], Jonah Gabry [ctb], Luciano Selzer [ctb], Gavin Simpson [ctb], Jens Preussner [ctb], Jay Hesselberth [ctb], Hadley Wickham [ctb], Matthew Lincoln [ctb], Alessandro Gasparini [ctb], Lukasz Komsta [ctb], Frederick Novometsky [ctb], Wilson Freitas [ctb], Michelle Evans [ctb], Jason Cory Brunson [ctb], Simon Jackson [ctb], Ben Whalley [ctb], Karissa Whiting [ctb], Yves Rosseel [ctb], Michael Kuehn [ctb], Jorge Cimentada [ctb], Erle Holgersen [ctb], Karl Dunkle Werner [ctb] (<https://orcid.org/0000-0003-0523-7309>), Ethan Christensen [ctb], Steven Pav [ctb], Paul PJ [ctb], Ben Schneider [ctb], Patrick Kennedy [ctb], Lily Medina [ctb], Brian Fannin [ctb], Jason Muhlenkamp [ctb], Matt Lehman [ctb], Bill Denney [ctb] (<https://orcid.org/0000-0002-5759-428X>), Nic Crane [ctb], Andrew Bates [ctb], Vincent Arel-Bundock [ctb] (<https://orcid.org/0000-0003-2042-7063>), Hideaki Hayashi [ctb], Luis Tobalina [ctb], Annie Wang [ctb], Wei Yang Tham [ctb], Clara Wang [ctb], Abby Smith [ctb] (<https://orcid.org/0000-0002-3207-0375>), Jasper Cooper [ctb] (<https://orcid.org/0000-0002-8639-3188>), E Auden Krauska [ctb] (<https://orcid.org/0000-0002-1466-5850>), Alex Wang [ctb], Malcolm Barrett [ctb] (<https://orcid.org/0000-0003-0299-5825>), Charles Gray [ctb] (<https://orcid.org/0000-0002-9978-011X>), Jared Wilber [ctb], Vilmantas Gegzna [ctb] (<https://orcid.org/0000-0002-9500-5167>), Eduard Szoecs [ctb], Frederik Aust [ctb] (<https://orcid.org/0000-0003-4900-788X>), Angus Moore [ctb], Nick Williams [ctb], Marius Barth [ctb] (<https://orcid.org/0000-0002-3421-6665>), Bruna Wundervald [ctb] (<https://orcid.org/0000-0001-8163-220X>), Joyce Cahoon [ctb] (<https://orcid.org/0000-0001-7217-4702>), Grant McDermott [ctb] (<https://orcid.org/0000-0001-7883-8573>), Kevin Zarca [ctb], Shiro Kuriwaki [ctb] (<https://orcid.org/0000-0002-5687-2647>), Lukas Wallrich [ctb] (<https://orcid.org/0000-0003-2121-5177>), James Martherus [ctb] (<https://orcid.org/0000-0002-8285-3300>), Chuliang Xiao [ctb] (<https://orcid.org/0000-0002-8466-9398>), Joseph Larmarange [ctb], Max Kuhn [ctb], Michal Bojanowski [ctb], Hakon Malmedal [ctb], Clara Wang [ctb], Sergio Oller [ctb], Luke Sonnet [ctb], Jim Hester [ctb], Cory Brunson [ctb], Ben Schneider [ctb], Bernie Gray [ctb] (<https://orcid.org/0000-0001-9190-6032>), Mara Averick [ctb], Aaron Jacobs [ctb], Andreas Bender [ctb], Sven Templer [ctb], Paul-Christian Buerkner [ctb], Matthew Kay [ctb], Erwan Le Pennec [ctb], Johan Junkka [ctb], Hao Zhu [ctb], Benjamin Soltoff [ctb], Zoe Wilkinson Saldana [ctb], Tyler Littlefield [ctb], Charles T. Gray [ctb], Shabbh E. Banks [ctb], Serina Robinson [ctb], Roger Bivand [ctb], Riinu Ots [ctb], Nicholas Williams [ctb], Nina Jakobsen [ctb], Michael Weylandt [ctb], Lisa Lendway [ctb], Karl Hailperin [ctb], Josue Rodriguez [ctb], Jenny Bryan [ctb], Chris Jarvis [ctb], Greg Macfarlane [ctb], Brian Mannakee [ctb], Drew Tyre [ctb], Shreyas Singh [ctb], Laurens Geffert [ctb], Hong Ooi [ctb], Henrik Bengtsson [ctb], Eduard Szocs [ctb], David Hugh-Jones [ctb], Matthieu Stigler [ctb], Hugo Tavares [ctb] (<https://orcid.org/0000-0001-9373-2726>), R. Willem Vervoort [ctb], Brenton M. Wiernik [ctb], Josh Yamamoto [ctb], Jasme Lee [ctb], Taren Sanders [ctb] (<https://orcid.org/0000-0002-4504-6008>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.