Tidy a(n) gmm object
Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
## S3 method for class 'gmm' tidy(x, conf.int = FALSE, conf.level = 0.95, exponentiate = FALSE, ...)
x |
A |
conf.int |
Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to |
conf.level |
The confidence level to use for the confidence interval
if |
exponentiate |
Logical indicating whether or not to exponentiate the
the coefficient estimates. This is typical for logistic and multinomial
regressions, but a bad idea if there is no log or logit link. Defaults
to |
... |
Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
A tibble::tibble()
with columns:
conf.high |
Upper bound on the confidence interval for the estimate. |
conf.low |
Lower bound on the confidence interval for the estimate. |
estimate |
The estimated value of the regression term. |
p.value |
The two-sided p-value associated with the observed statistic. |
statistic |
The value of a T-statistic to use in a hypothesis that the regression term is non-zero. |
std.error |
The standard error of the regression term. |
term |
The name of the regression term. |
Other gmm tidiers:
glance.gmm()
if (requireNamespace("gmm", quietly = TRUE)) { library(gmm) # examples come from the "gmm" package ## CAPM test with GMM data(Finance) r <- Finance[1:300, 1:10] rm <- Finance[1:300, "rm"] rf <- Finance[1:300, "rf"] z <- as.matrix(r - rf) t <- nrow(z) zm <- rm - rf h <- matrix(zm, t, 1) res <- gmm(z ~ zm, x = h) # tidy result tidy(res) tidy(res, conf.int = TRUE) tidy(res, conf.int = TRUE, conf.level = .99) # coefficient plot library(ggplot2) library(dplyr) tidy(res, conf.int = TRUE) %>% mutate(variable = reorder(term, estimate)) %>% ggplot(aes(estimate, variable)) + geom_point() + geom_errorbarh(aes(xmin = conf.low, xmax = conf.high)) + geom_vline(xintercept = 0, color = "red", lty = 2) # from a function instead of a matrix g <- function(theta, x) { e <- x[, 2:11] - theta[1] - (x[, 1] - theta[1]) %*% matrix(theta[2:11], 1, 10) gmat <- cbind(e, e * c(x[, 1])) return(gmat) } x <- as.matrix(cbind(rm, r)) res_black <- gmm(g, x = x, t0 = rep(0, 11)) tidy(res_black) tidy(res_black, conf.int = TRUE) ## APT test with Fama-French factors and GMM f1 <- zm f2 <- Finance[1:300, "hml"] - rf f3 <- Finance[1:300, "smb"] - rf h <- cbind(f1, f2, f3) res2 <- gmm(z ~ f1 + f2 + f3, x = h) td2 <- tidy(res2, conf.int = TRUE) td2 # coefficient plot td2 %>% mutate(variable = reorder(term, estimate)) %>% ggplot(aes(estimate, variable)) + geom_point() + geom_errorbarh(aes(xmin = conf.low, xmax = conf.high)) + geom_vline(xintercept = 0, color = "red", lty = 2) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.