Tidy a(n) lm object
Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
## S3 method for class 'lm' tidy(x, conf.int = FALSE, conf.level = 0.95, ...)
x |
An |
conf.int |
Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to |
conf.level |
The confidence level to use for the confidence interval
if |
... |
Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
If the linear model is an mlm
object (multiple linear model),
there is an additional column response
. See tidy.mlm()
.
A tibble::tibble()
with columns:
conf.high |
Upper bound on the confidence interval for the estimate. |
conf.low |
Lower bound on the confidence interval for the estimate. |
estimate |
The estimated value of the regression term. |
p.value |
The two-sided p-value associated with the observed statistic. |
statistic |
The value of a T-statistic to use in a hypothesis that the regression term is non-zero. |
std.error |
The standard error of the regression term. |
term |
The name of the regression term. |
Other lm tidiers:
augment.glm()
,
augment.lm()
,
glance.glm()
,
glance.lm()
,
glance.summary.lm()
,
glance.svyglm()
,
tidy.glm()
,
tidy.lm.beta()
,
tidy.mlm()
,
tidy.summary.lm()
library(ggplot2) library(dplyr) mod <- lm(mpg ~ wt + qsec, data = mtcars) tidy(mod) glance(mod) # coefficient plot d <- tidy(mod, conf.int = TRUE) ggplot(d, aes(estimate, term, xmin = conf.low, xmax = conf.high, height = 0)) + geom_point() + geom_vline(xintercept = 0, lty = 4) + geom_errorbarh() # Aside: There are tidy() and glance() methods for lm.summary objects too. # This can be useful when you want to conserve memory by converting large lm # objects into their leaner summary.lm equivalents. s <- summary(mod) tidy(s, conf.int = TRUE) glance(s) augment(mod) augment(mod, mtcars, interval = "confidence") # predict on new data newdata <- mtcars %>% head(6) %>% mutate(wt = wt + 1) augment(mod, newdata = newdata) # ggplot2 example where we also construct 95% prediction interval mod2 <- lm(mpg ~ wt, data = mtcars) ## simpler bivariate model since we're plotting in 2D au <- augment(mod2, newdata = newdata, interval = "prediction") ggplot(au, aes(wt, mpg)) + geom_point() + geom_line(aes(y = .fitted)) + geom_ribbon(aes(ymin = .lower, ymax = .upper), col = NA, alpha = 0.3) # predict on new data without outcome variable. Output does not include .resid newdata <- newdata %>% select(-mpg) augment(mod, newdata = newdata) au <- augment(mod, data = mtcars) ggplot(au, aes(.hat, .std.resid)) + geom_vline(size = 2, colour = "white", xintercept = 0) + geom_hline(size = 2, colour = "white", yintercept = 0) + geom_point() + geom_smooth(se = FALSE) plot(mod, which = 6) ggplot(au, aes(.hat, .cooksd)) + geom_vline(xintercept = 0, colour = NA) + geom_abline(slope = seq(0, 3, by = 0.5), colour = "white") + geom_smooth(se = FALSE) + geom_point() # column-wise models a <- matrix(rnorm(20), nrow = 10) b <- a + rnorm(length(a)) result <- lm(b ~ a) tidy(result)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.