Tidy a(n) lmodel2 object
Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
## S3 method for class 'lmodel2' tidy(x, ...)
x |
A |
... |
Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
There are always only two terms in an lmodel2
: "Intercept"
and "Slope"
. These are computed by four methods: OLS
(ordinary least squares), MA (major axis), SMA (standard major
axis), and RMA (ranged major axis).
The returned p-value is one-tailed and calculated via a permutation test.
A permutational test is used because distributional assumptions may not
be valid. More information can be found in
vignette("mod2user", package = "lmodel2")
.
A tibble::tibble()
with columns:
conf.high |
Upper bound on the confidence interval for the estimate. |
conf.low |
Lower bound on the confidence interval for the estimate. |
estimate |
The estimated value of the regression term. |
p.value |
The two-sided p-value associated with the observed statistic. |
term |
The name of the regression term. |
method |
Either OLS/MA/SMA/RMA |
Other lmodel2 tidiers:
glance.lmodel2()
if (requireNamespace("lmodel2", quietly = TRUE)) { library(lmodel2) data(mod2ex2) Ex2.res <- lmodel2(Prey ~ Predators, data = mod2ex2, "relative", "relative", 99) Ex2.res tidy(Ex2.res) glance(Ex2.res) # this allows coefficient plots with ggplot2 library(ggplot2) ggplot(tidy(Ex2.res), aes(estimate, term, color = method)) + geom_point() + geom_errorbarh(aes(xmin = conf.low, xmax = conf.high)) + geom_errorbarh(aes(xmin = conf.low, xmax = conf.high)) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.