Tidy report of regression models (into R console, Word, or HTML).
This function is an extension (and combination) of
texreg::screenreg()
,
texreg::htmlreg()
,
MuMIn::std.coef()
, and
MuMIn::r.squaredGLMM()
.
model_summary( model_list, std_coef = FALSE, digits = nsmall, nsmall = 3, zero = ifelse(std_coef, FALSE, TRUE), modify_se = NULL, bold = 0, file = NULL, ... )
model_list |
A single model or a list of models. The models should be of the same type. |
std_coef |
Standardized coefficients? Default is |
digits |
Number of decimal places of output. Default is |
nsmall |
The same as |
zero |
Display "0" before "."? Default is |
modify_se |
Set custom values for standard errors.
Useful if you need to replace raw SEs with robust SEs.
New SEs should be provided as a list of numeric vectors.
See usage in |
bold |
The p-value threshold below which the coefficient shall be formatted in a bold font.
For example, |
file |
File name of the Word or HTML document.
The extension should be |
... |
Other parameters passed to the
|
Invisibly return the plain text of output.
## Example 1: Linear Model lm1=lm(Temp ~ Month + Day, data=airquality) lm2=lm(Temp ~ Month + Day + Wind + Solar.R, data=airquality) model_summary(lm1) model_summary(lm2) model_summary(list(lm1, lm2)) model_summary(list(lm1, lm2), std=TRUE, digits=2) model_summary(list(lm1, lm2), file="OLS Models.doc") model_summary(list(lm1, lm2), file="OLS Models.html") unlink("OLS Models.doc") # delete file for test unlink("OLS Models.html") # delete file for test ## Example 2: Generalized Linear Model glm1=glm(case ~ age + parity, data=infert, family=binomial) glm2=glm(case ~ age + parity + education + spontaneous + induced, data=infert, family=binomial) model_summary(list(glm1, glm2)) # "std_coef" is not applicable to glm model_summary(list(glm1, glm2), file="GLM Models.doc") unlink("GLM Models.doc") # delete file for test ## Example 3: Linear Mixed Model library(lmerTest) hlm1=lmer(Reaction ~ (1 | Subject), data=sleepstudy) hlm2=lmer(Reaction ~ Days + (1 | Subject), data=sleepstudy) hlm3=lmer(Reaction ~ Days + (Days | Subject), data=sleepstudy) model_summary(list(hlm1, hlm2, hlm3)) model_summary(list(hlm1, hlm2, hlm3), std=TRUE) model_summary(list(hlm1, hlm2, hlm3), file="HLM Models.doc") unlink("HLM Models.doc") # delete file for test ## Example 4: Generalized Linear Mixed Model library(lmerTest) data.glmm=MASS::bacteria glmm1=glmer(y ~ trt + week + (1 | ID), data=data.glmm, family=binomial) glmm2=glmer(y ~ trt + week + hilo + (1 | ID), data=data.glmm, family=binomial) model_summary(list(glmm1, glmm2)) # "std_coef" is not applicable to glmm model_summary(list(glmm1, glmm2), file="GLMM Models.doc") unlink("GLMM Models.doc") # delete file for test ## Example 5: Multinomial Logistic Model library(nnet) d=airquality d$Month=as.factor(d$Month) # Factor levels: 5, 6, 7, 8, 9 mn1=multinom(Month ~ Temp, data=d, Hess=TRUE) mn2=multinom(Month ~ Temp + Wind + Ozone, data=d, Hess=TRUE) model_summary(mn1) model_summary(mn2) model_summary(mn2, file="Multinomial Logistic Model.doc") unlink("Multinomial Logistic Model.doc") # delete file for test
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.