Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

pcaVarexpl

PCA diagnostics for variables


Description

Diagnostics of PCA to see the explained variance for each variable.

Usage

pcaVarexpl(X, a, center = TRUE, scale = TRUE, plot = TRUE, ...)

Arguments

X

numeric data frame or matrix

a

number of principal components

center

centring of X (FALSE or TRUE)

scale

scaling of X (FALSE or TRUE)

plot

if TRUE make plot with explained variance

...

additional graphics parameters, see par

Details

For a desired number of principal components the percentage of explained variance is computed for each variable and plotted.

Value

ExplVar

explained variance for each variable

Author(s)

Peter Filzmoser <P.Filzmoser@tuwien.ac.at>

References

K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.

See Also

Examples

data(glass)
res <- pcaVarexpl(glass,a=2)

chemometrics

Multivariate Statistical Analysis in Chemometrics

v1.4.2
GPL (>= 3)
Authors
Peter Filzmoser and Kurt Varmuza
Initial release
2017-03-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.