PCA diagnostics for variables
Diagnostics of PCA to see the explained variance for each variable.
pcaVarexpl(X, a, center = TRUE, scale = TRUE, plot = TRUE, ...)
X |
numeric data frame or matrix |
a |
number of principal components |
center |
centring of X (FALSE or TRUE) |
scale |
scaling of X (FALSE or TRUE) |
plot |
if TRUE make plot with explained variance |
... |
additional graphics parameters, see |
For a desired number of principal components the percentage of explained variance is computed for each variable and plotted.
ExplVar |
explained variance for each variable |
Peter Filzmoser <P.Filzmoser@tuwien.ac.at>
K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.
data(glass) res <- pcaVarexpl(glass,a=2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.