Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

plotRidge

Plot results of Ridge regression


Description

Two plots from Ridge regression are generated: The MSE resulting from Generalized Cross Validation (GCV) versus the Ridge parameter lambda, and the regression coefficients versus lambda. The optimal choice for lambda is indicated.

Usage

plotRidge(formula, data, lambda = seq(0.5, 50, by = 0.05), ...)

Arguments

formula

formula, like y~X, i.e., dependent~response variables

data

data frame to be analyzed

lambda

possible values for the Ridge parameter to evaluate

...

additional plot arguments

Details

For all values provided in lambda the results for Ridge regression are computed. The function lm.ridge is used for cross-validation and Ridge regression.

Value

predicted

predicted values for the optimal lambda

lambdaopt

optimal Ridge parameter lambda from GCV

Author(s)

Peter Filzmoser <P.Filzmoser@tuwien.ac.at>

References

K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.

See Also

Examples

data(PAC)
res=plotRidge(y~X,data=PAC,lambda=seq(1,20,by=0.5))

chemometrics

Multivariate Statistical Analysis in Chemometrics

v1.4.2
GPL (>= 3)
Authors
Peter Filzmoser and Kurt Varmuza
Initial release
2017-03-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.