Profiling k-Prototypes Clustering
Visualization of a k-prototypes clustering result for cluster interpretation.
clprofiles(object, x, vars = NULL, col = NULL)
object |
Object resulting from a call of resulting |
x |
Original data. |
vars |
Optional vector of either column indices or variable names. |
col |
Palette of cluster colours to be used for the plots. As a default RColorBrewer's
|
For numerical variables boxplots and for factor variables barplots of each cluster are generated.
# generate toy data with factors and numerics n <- 100 prb <- 0.9 muk <- 1.5 clusid <- rep(1:4, each = n) x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb)) x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb))) x1 <- as.factor(x1) x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb)) x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb))) x2 <- as.factor(x2) x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk)) x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk)) x <- data.frame(x1,x2,x3,x4) # apply k-prototyps kpres <- kproto(x, 4) clprofiles(kpres, x) # in real world clusters are often not as clear cut # by variation of lambda the emphasize is shifted towards factor / numeric variables kpres <- kproto(x, 2) clprofiles(kpres, x) kpres <- kproto(x, 2, lambda = 0.1) clprofiles(kpres, x) kpres <- kproto(x, 2, lambda = 25) clprofiles(kpres, x)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.