Summary Methods for 'conreg' Objects
Methods for conreg
objects
## S3 method for class 'conreg' fitted(object, ...) ## S3 method for class 'conreg' residuals(object, ...) ## S3 method for class 'conreg' knots(Fn, ...) ## S3 method for class 'conreg' lines(x, type = "l", col = 2, lwd = 1.5, show.knots = TRUE, add.iSpline = TRUE, force.iSpl = FALSE, ...) ## S3 method for class 'conreg' plot(x, type = "l", col = 2, lwd = 1.5, show.knots = TRUE, add.iSpline = TRUE, force.iSpl = FALSE, xlab = "x", ylab = expression(s[c](x)), sub = "simple concave regression", col.sub = col, ...) ## S3 method for class 'conreg' predict(object, x, deriv = 0, ...) ## S3 method for class 'conreg' print(x, digits = max(3, getOption("digits") - 3), ...)
object, Fn, x |
an R object of class |
type, col, lwd, xlab, ylab, sub, col.sub |
plotting arguments as in
|
show.knots |
logical indicating the spline knots should be marked additionally. |
add.iSpline |
logical indicating if an interpolation
spline should be considered for plotting. This is only used when it
is itself concave/convex, unless |
force.iSpl |
logical indicating if an interpolating spline is drawn even when it is not convex/concave. |
deriv |
for |
digits |
number of significant digits for printing. |
... |
further arguments, potentially passed to methods. |
Martin Maechler
conreg
, ....
example(conreg, echo = FALSE) class(rc) # "conreg" rc # calls the print method knots(rc) plot(rc) ## and now _force_ the not-quite-concave cubic spline : plot(rc, force.iSpl=TRUE) xx <- seq(-0.1, 1.1, length=201) # slightly extrapolate ## Get function s(x) and first derivative s'(x) : yx <- predict(rc, xx) y1 <- predict(rc, xx, deriv = 1) op <- par(las=1) plot(xx, yx, type = "l", main="plot(xx, predict( conreg(.), xx))") par(new=TRUE) # draw the first derivative "on top" plot(xx, y1, type = "l", col = "blue", axes = FALSE, ann = FALSE) abline(h = 0, lty="1A", col="blue") axis(4, col="blue", col.axis="blue", col.ticks="blue") mtext("first derivative s'(.)", col="blue") par(op)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.