Malignant Glioma Pilot Study
A non-randomized pilot study on malignant glioma patients with pretargeted adjuvant radioimmunotherapy using yttrium-90-biotin.
glioma
A data frame with 37 observations on 7 variables.
no.
patient number.
age
patient age (years).
sex
a factor with levels "F"
(Female) and "M"
(Male).
histology
a factor with levels "GBM"
(grade IV) and "Grade3"
(grade
III).
group
a factor with levels "Control"
and "RIT"
.
event
status indicator for time
: FALSE
for right-censored
observations and TRUE
otherwise.
time
survival time (months).
The primary endpoint of this small pilot study is survival. Since the survival times are tied, the classical asymptotic logrank test may be inadequate in this setup. Therefore, a permutation test using Monte Carlo resampling was computed in the original paper. The data are taken from Tables 1 and 2 of Grana et al. (2002).
Grana, C., Chinol, M., Robertson, C., Mazzetta, C., Bartolomei, M., De Cicco, C., Fiorenza, M., Gatti, M., Caliceti, P. and Paganelli, G. (2002). Pretargeted adjuvant radioimmunotherapy with Yttrium-90-biotin in malignant glioma patients: A pilot study. British Journal of Cancer 86(2), 207–212. doi: 10.1038/sj.bjc.6600047
## Grade III glioma g3 <- subset(glioma, histology == "Grade3") ## Plot Kaplan-Meier estimates op <- par(no.readonly = TRUE) # save current settings layout(matrix(1:2, ncol = 2)) plot(survfit(Surv(time, event) ~ group, data = g3), main = "Grade III Glioma", lty = 2:1, ylab = "Probability", xlab = "Survival Time in Month", xlim = c(-2, 72)) legend("bottomleft", lty = 2:1, c("Control", "Treated"), bty = "n") ## Exact logrank test logrank_test(Surv(time, event) ~ group, data = g3, distribution = "exact") ## Grade IV glioma gbm <- subset(glioma, histology == "GBM") ## Plot Kaplan-Meier estimates plot(survfit(Surv(time, event) ~ group, data = gbm), main = "Grade IV Glioma", lty = 2:1, ylab = "Probability", xlab = "Survival Time in Month", xlim = c(-2, 72)) legend("topright", lty = 2:1, c("Control", "Treated"), bty = "n") par(op) # reset ## Exact logrank test logrank_test(Surv(time, event) ~ group, data = gbm, distribution = "exact") ## Stratified approximative (Monte Carlo) logrank test logrank_test(Surv(time, event) ~ group | histology, data = glioma, distribution = approximate(nresample = 10000))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.