Functions for Data Transformation
Transformations for factors and numeric variables.
id_trafo(x) rank_trafo(x, ties.method = c("mid-ranks", "random")) normal_trafo(x, ties.method = c("mid-ranks", "average-scores")) median_trafo(x, mid.score = c("0", "0.5", "1")) savage_trafo(x, ties.method = c("mid-ranks", "average-scores")) consal_trafo(x, ties.method = c("mid-ranks", "average-scores"), a = 5) koziol_trafo(x, ties.method = c("mid-ranks", "average-scores"), j = 1) klotz_trafo(x, ties.method = c("mid-ranks", "average-scores")) mood_trafo(x, ties.method = c("mid-ranks", "average-scores")) ansari_trafo(x, ties.method = c("mid-ranks", "average-scores")) fligner_trafo(x, ties.method = c("mid-ranks", "average-scores")) logrank_trafo(x, ties.method = c("mid-ranks", "Hothorn-Lausen", "average-scores"), weight = logrank_weight, ...) logrank_weight(time, n.risk, n.event, type = c("logrank", "Gehan-Breslow", "Tarone-Ware", "Peto-Peto", "Prentice", "Prentice-Marek", "Andersen-Borgan-Gill-Keiding", "Fleming-Harrington", "Gaugler-Kim-Liao", "Self"), rho = NULL, gamma = NULL) f_trafo(x) of_trafo(x, scores = NULL) zheng_trafo(x, increment = 0.1) maxstat_trafo(x, minprob = 0.1, maxprob = 1 - minprob) fmaxstat_trafo(x, minprob = 0.1, maxprob = 1 - minprob) ofmaxstat_trafo(x, minprob = 0.1, maxprob = 1 - minprob) trafo(data, numeric_trafo = id_trafo, factor_trafo = f_trafo, ordered_trafo = of_trafo, surv_trafo = logrank_trafo, var_trafo = NULL, block = NULL) mcp_trafo(...)
x |
an object of class |
ties.method |
a character, the method used to handle ties. The score generating function
either uses the mid-ranks ( |
mid.score |
a character, the score assigned to observations exactly equal to the median:
either 0 ( |
a |
a numeric vector, the values taken as the constant a in the
Conover-Salsburg scores. Defaults to |
j |
a numeric, the value taken as the constant j in the Koziol-Nemec
scores. Defaults to |
weight |
a function where the first three arguments must correspond to |
time |
a numeric vector, the ordered distinct time points. |
n.risk |
a numeric vector, the number of subjects at risk at each time point
specified in |
n.event |
a numeric vector, the number of events at each time point specified in
|
type |
a character, one of |
rho |
a numeric vector, the ρ constant when |
gamma |
a numeric vector, the γ constant when |
scores |
a numeric vector or list, the scores corresponding to each level of an
ordered factor. Defaults to |
increment |
a numeric, the score increment between the order-restricted sets of scores.
A fraction greater than 0, but smaller than or equal to 1. Defaults to
|
minprob |
a numeric, a fraction between 0 and 0.5; see |
maxprob |
a numeric, a fraction between 0.5 and 1; see |
data |
an object of class |
numeric_trafo |
a function to be applied to elements of class |
factor_trafo |
a function to be applied to elements of class |
ordered_trafo |
a function to be applied to elements of class |
surv_trafo |
a function to be applied to elements of class |
var_trafo |
an optional named list of functions to be applied to the corresponding
variables in |
block |
an optional factor whose levels are interpreted as blocks. |
... |
|
The utility functions documented here are used to define specialized test procedures.
id_trafo
is the identity transformation.
rank_trafo
, normal_trafo
, median_trafo
,
savage_trafo
, consal_trafo
and koziol_trafo
compute rank
scores, normal scores, median scores, Savage scores, Conover-Salsburg scores
(see neuropathy
) and Koziol-Nemec scores, respectively, for
location problems.
klotz_trafo
, mood_trafo
, ansari_trafo
and
fligner_trafo
compute Klotz scores, Mood scores, Ansari-Bradley scores
and Fligner-Killeen scores, respectively, for scale problems.
logrank_trafo
computes weighted logrank scores for right-censored data,
allowing for a user-defined weight function through the weight
argument
(see GTSG
).
f_trafo
computes dummy matrices for factors and of_trafo
assigns
scores to ordered factors. For ordered factors with two levels, the scores
are normalized to the [0, 1] range. zheng_trafo
computes a
finite collection of order-restricted scores for ordered factors (see
jobsatisfaction
, malformations
and
vision
).
maxstat_trafo
, fmaxstat_trafo
and ofmaxstat_trafo
compute
scores for cutpoint problems (see maxstat_test
).
trafo
applies its arguments to the elements of data
according to
the classes of the elements. A trafo
function with modified default
arguments is usually supplied to independence_test
via the
xtrafo
or ytrafo
arguments. Fine tuning, i.e., different
transformations for different variables, is possible by supplying a named list
of functions to the var_trafo
argument.
mcp_trafo
computes contrast matrices for factors.
A numeric vector or matrix with nrow(x)
rows and an arbitrary number of
columns. For trafo
, a named matrix with nrow(data)
rows and an
arbitrary number of columns.
Starting with coin version 1.1-0, all transformation functions are now
passing through missing values (i.e., NA
s). Furthermore,
median_trafo
and logrank_trafo
are now increasing
functions (in conformity with most other transformations in this package).
## Dummy matrix, two-sample problem (only one column) f_trafo(gl(2, 3)) ## Dummy matrix, K-sample problem (K columns) x <- gl(3, 2) f_trafo(x) ## Score matrix ox <- as.ordered(x) of_trafo(ox) of_trafo(ox, scores = c(1, 3:4)) of_trafo(ox, scores = list(s1 = 1:3, s2 = c(1, 3:4))) zheng_trafo(ox, increment = 1/3) ## Normal scores y <- runif(6) normal_trafo(y) ## All together now trafo(data.frame(x = x, ox = ox, y = y), numeric_trafo = normal_trafo) ## The same, but allows for fine-tuning trafo(data.frame(x = x, ox = ox, y = y), var_trafo = list(y = normal_trafo)) ## Transformations for maximally selected statistics maxstat_trafo(y) fmaxstat_trafo(x) ofmaxstat_trafo(ox) ## Apply transformation blockwise (as in the Friedman test) trafo(data.frame(y = 1:20), numeric_trafo = rank_trafo, block = gl(4, 5)) ## Multiple comparisons dta <- data.frame(x) mcp_trafo(x = "Tukey")(dta) ## The same, but useful when specific contrasts are desired K <- rbind("2 - 1" = c(-1, 1, 0), "3 - 1" = c(-1, 0, 1), "3 - 2" = c( 0, -1, 1)) mcp_trafo(x = K)(dta)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.