Convert between clr and ilr, and between cpt and ipt.
Compute the centered log ratio transform of a (dataset of) from isometric log-ratio transform(s) and its inverse. Equivalently, compute centered and isometric planar transforms from each other. Acts in vectors and in bilinear forms. For bilinear forms, transform between variation-form from clr-form.
clr2ilr( x , V=ilrBase(x=x) ) ilr2clr( z , V=ilrBase(z=z), x=gsi.orig(z) ) clrvar2ilr( varx , V=ilrBase(D=ncol(varx)) ) ilrvar2clr( varz , V=ilrBase(D=ncol(varz)+1) ,x=NULL) clrvar2variation(Sigma) variation2clrvar(TT) is.clrvar(M, tol=1e-10) is.ilrvar(M, tol=1e-10)
x |
the clr/cpt-transform of composition(s) (in the ilr2-routines provided only to give column names.) |
z |
the ilr/ipt-transform of composition(s) |
varx, Sigma |
variance or covariance matrix of clr/cpt-transformed compositions |
varz |
variance or covariance matrix of ilr/ipt-transformed compositions |
V |
a matrix with columns giving the chosen basis of the clr-plane |
TT |
variation matrix |
M |
a matrix, to check if it is a valid variance |
tol |
tolerance for the check |
These functions perform a matrix multiplication with V
in an
appropriate way.
clr2ilr
gives the ilr/ipt transform of the same composition(s),ilr2clr
gives the clr/cpt transform of the same
composition(s),clrvar2ilr
gives the variance-/covariance-matrix of the ilr/ipt transform of the same compositional data set,ilrvar2clr
and clrvar2variation
give the variance-/covariance-matrix of the clr/cpt
transform of the same compositional data set.variation2clrvar
gives the variation matrix from the clr-covariance matrixis.*var
check if the given matrix satisfies the conditions to be an ilr-variance
resp. a clr-variance
K.Gerald v.d. Boogaart http://www.stat.boogaart.de
Egozcue J.J., V. Pawlowsky-Glahn, G. Mateu-Figueras and
C. Barcel'o-Vidal (2003) Isometric logratio transformations for
compositional data analysis. Mathematical Geology, 35(3)
279-300
Aitchison, J, C. Barcel'o-Vidal, J.J. Egozcue, V. Pawlowsky-Glahn
(2002) A consise guide to the algebraic geometric structure of the
simplex, the sample space for compositional data analysis, Terra
Nostra, Schriften der Alfred Wegener-Stiftung, 03/2003
data(SimulatedAmounts) ilrInv(clr2ilr(clr(sa.lognormals)))-clo(sa.lognormals) clrInv(ilr2clr(ilr(sa.lognormals)))-clo(sa.lognormals) ilrvar2clr(var(ilr(sa.lognormals)))-var(clr(sa.lognormals)) clrvar2ilr(var(cpt(sa.lognormals)))-var(ipt(sa.lognormals)) variation(acomp(sa.lognormals)) clrvar2variation(var(acomp(sa.lognormals)))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.