Absolute Value of Generator Derivatives via Monte Carlo
Computes the absolute values of the dth generator derivative psi^{(d)} via Monte Carlo simulation.
absdPsiMC(t, family, theta, degree = 1, n.MC, method = c("log", "direct", "pois.direct", "pois"), log = FALSE, is.log.t = FALSE)
t |
|
family |
Archimedean family (name or object). |
theta |
parameter value. |
degree |
order d of the derivative. |
n.MC |
Monte Carlo sample size. |
method |
different methods:
|
log |
if TRUE the logarithm of absdPsi is returned. |
is.log.t |
if TRUE the argument |
The absolute value of the dth derivative of the Laplace-Stieltjes transform psi=LS[F] can be approximated via
(-1)^d psi^{(d)}(t) = int_0^Inf x^d exp(-tx) dF(x) ~= (1/N) sum(k=1..N)V_k^d exp(-V_k t), t > 0,
where V_k ~ F, k in {1,...,N}.
This approximation is used where d=degree
and
N=n.MC
. Note that this is comparably fast even if
t
contains many evaluation points, since the random variates
V_k ~ F, k in {1,...,N} only have
to be generated once, not depending on t
.
numeric
vector of the same length as t
containing
the absolute values of the generator derivatives.
Hofert, M., Mächler, M., and McNeil, A. J. (2013). Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications. Journal de la Société Française de Statistique 154(1), 25–63.
t <- c(0:100,Inf) set.seed(1) (ps <- absdPsiMC(t, family="Gumbel", theta=2, degree=10, n.MC=10000, log=TRUE)) ## Note: The absolute value of the derivative at 0 should be Inf for ## Gumbel, however, it is always finite for the Monte Carlo approximation set.seed(1) ps2 <- absdPsiMC(log(t), family="Gumbel", theta=2, degree=10, n.MC=10000, log=TRUE, is.log.t = TRUE) stopifnot(all.equal(ps[-1], ps2[-1], tolerance=1e-14)) ## Now is there an advantage of using "is.log.t" ? sapply(eval(formals(absdPsiMC)$method), function(MM) absdPsiMC(780, family="Gumbel", method = MM, theta=2, degree=10, n.MC=10000, log=TRUE, is.log.t = TRUE)) ## not really better, yet...
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.