Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

beta.Blomqvist

Sample and Population Version of Blomqvist's Beta for Archimedean Copulas


Description

Compute the population (beta.()) and sample (betan()) version of Blomqvist's beta for an Archimedean copula.

See the reference below for definitions and formulas.

Usage

beta.(cop, theta, d, scaling=FALSE)
betan(u, scaling=FALSE)

Arguments

cop

an Archimedean copula (of dimension d) to be estimated.

theta

copula parameter.

d

dimension.

scaling

logical, if true, the factors 2^(d-1)/(2^(d-1)-1) and 2^(1-d) in Blomqvist's beta are omitted.

u

For betan: (n x d)-matrix of d-dimensional observations distributed according to the copula.

Value

beta.:

a number, being the population version of Blomqvist's beta for the corresponding Archimedean copula;

betan:

a number, being the sample version of Blomqvist's beta for the given data.

References

Schmid and Schmidt (2007), Nonparametric inference on multivariate versions of Blomqvist's beta and related measures of tail dependence, Metrika 66, 323–354.

See Also

Examples

beta.(copGumbel, 2.5, d = 5)

d.set <- c(2:6, 8, 10, 15, 20, 30)
cols <- adjustcolor(colorRampPalette(c("red", "orange", "blue"),
                                     space = "Lab")(length(d.set)), 0.8)
## AMH:
for(i in seq_along(d.set))
   curve(Vectorize(beta.,"theta")(copAMH, x, d = d.set[i]), 0, .999999,
         main = "Blomqvist's beta(.) for  AMH",
         xlab = quote(theta), ylab = quote(beta(theta, AMH)),
         add = (i > 1), lwd=2, col=cols[i])
mtext("NB:  d=2 and d=3 are the same")
legend("topleft", paste("d =",d.set), bty="n", lwd=2, col=cols)

## Gumbel:
for(i in seq_along(d.set))
   curve(Vectorize(beta.,"theta")(copGumbel, x, d = d.set[i]), 1, 10,
         main = "Blomqvist's beta(.) for  Gumbel",
         xlab = quote(theta), ylab = quote(beta(theta, Gumbel)),
         add=(i > 1), lwd=2, col=cols[i])
legend("bottomright", paste("d =",d.set), bty="n", lwd=2, col=cols)

## Clayton:
for(i in seq_along(d.set))
   curve(Vectorize(beta.,"theta")(copClayton, x, d = d.set[i]), 1e-5, 10,
         main = "Blomqvist's beta(.) for  Clayton",
         xlab = quote(theta), ylab = quote(beta(theta, Gumbel)),
         add=(i > 1), lwd=2, col=cols[i])
legend("bottomright", paste("d =",d.set), bty="n", lwd=2, col=cols)

## Joe:
for(i in seq_along(d.set))
   curve(Vectorize(beta.,"theta")(copJoe, x, d = d.set[i]), 1, 10,
         main = "Blomqvist's beta(.) for  Joe",
         xlab = quote(theta), ylab = quote(beta(theta, Gumbel)),
         add=(i > 1), lwd=2, col=cols[i])
legend("bottomright", paste("d =",d.set), bty="n", lwd=2, col=cols)

## Frank:
for(i in seq_along(d.set))
   curve(Vectorize(beta.,"theta")(copFrank, x, d = d.set[i]), 1e-5, 50,
         main = "Blomqvist's beta(.) for  Frank",
         xlab = quote(theta), ylab = quote(beta(theta, Gumbel)),
         add=(i > 1), lwd=2, col=cols[i])
legend("bottomright", paste("d =",d.set), bty="n", lwd=2, col=cols)

## Shows the numeric problems:
curve(Vectorize(beta.,"theta")(copFrank, x, d = 29), 35, 42, col="violet")

copula

Multivariate Dependence with Copulas

v1.0-1
GPL (>= 3) | file LICENCE
Authors
Marius Hofert [aut] (<https://orcid.org/0000-0001-8009-4665>), Ivan Kojadinovic [aut] (<https://orcid.org/0000-0002-2903-1543>), Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>), Jun Yan [aut] (<https://orcid.org/0000-0003-4401-7296>), Johanna G. Nešlehová [ctb] (evTestK(), <https://orcid.org/0000-0001-9634-4796>), Rebecca Morger [ctb] (fitCopula.ml(): code for free mixCopula weight parameters)
Initial release
2020-12-07

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.