Methods for Contour Plots in Package 'copula'
Methods for function contour
to draw contour lines aka a
level plot for objects from package copula.
## S4 method for signature 'Copula' contour(x, FUN, n.grid = 26, delta = 0, xlab = quote(u[1]), ylab = quote(u[2]), box01 = TRUE, ...) ## S4 method for signature 'mvdc' contour(x, FUN, xlim, ylim, n.grid = 26, xlab = quote(x[1]), ylab = quote(x[2]), box01 = FALSE, ...)
x |
|
FUN |
|
n.grid |
the number of grid points used in each dimension. This
can be a vector of length two, giving the number of grid points used
in x- and y-direction, respectively; the function |
delta |
a small number in [0, 1/2)
influencing the evaluation boundaries. The x- and y- vectors will
have the range |
xlab, ylab |
the x-axis and y-axis labels. |
xlim, ylim |
the |
box01 |
a logical specifying if a faint rectangle should be drawn
on the boundary of [0,1]^2 (often useful for copulas, but
typically not for general multivariate distributions
( |
... |
further arguments for (the default method of)
|
The persp-methods
for “perspective” aka
“3D” plots.
contour(frankCopula(-0.8), dCopula) contour(frankCopula(-0.8), dCopula, delta=1e-6) contour(frankCopula(-1.2), pCopula) contour(claytonCopula(2), pCopula) ## the Gumbel copula density is "extreme" ## --> use fine grid (and enough levels): r <- contour(gumbelCopula(3), dCopula, n=200, nlevels=100) range(r$z)# [0, 125.912] ## Now superimpose contours of three resolutions: contour(r, levels = seq(1, max(r$z), by=2), lwd=1.5) contour(r, levels = (1:13)/2, add=TRUE, col=adjustcolor(1,3/4), lty=2) contour(r, levels = (1:13)/4, add=TRUE, col=adjustcolor(2,1/2), lty=3, lwd=3/4) x <- mvdc(gumbelCopula(3), c("norm", "norm"), list(list(mean = 0, sd =1), list(mean = 1))) contour(x, dMvdc, xlim=c(-2, 2), ylim=c(-1, 3)) contour(x, pMvdc, xlim=c(-2, 2), ylim=c(-1, 3))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.