Non-parametric Estimators of the Matrix of Tail-Dependence Coefficients
Computing non-parametric estimators of the (matrix of) tail-dependence coefficients.
fitLambda(u, method = c("Schmid.Schmidt", "t"), p = min(100/nrow(u), 0.1), lower.tail = TRUE, verbose = FALSE, ...)
u |
n x d- |
method |
the method with which the tail-dependence coefficients are computed:
|
p |
(small) cut-off parameter in [0,1] below (for
|
lower.tail |
|
verbose |
a |
... |
additional arguments passed to the underlying functions
(at the moment only to |
As seen in the examples, be careful using nonparametric estimators,
they might not perform too well (depending on p
and in
general). After all, the notion of tail dependence is a limit,
finite sample sizes may not be able to capture limits well.
The matrix of pairwise coefficients of tail dependence; for
method = "t"
a list
with components
Lambda
,
the matrix of pairwise estimated correlation coefficients P
and the matrix of pairwise estimated degrees of freedom Nu
.
Jaworski, P., Durante, F., Härdle, W. K., Rychlik, T. (2010). Copula Theory and Its Applications Springer, Lecture Notes in Statistics – Proceedings.
Schmid, F., Schmidt, R. (2007). Multivariate conditional versions of Spearman's rho and related measures of tail dependence. Journal of Multivariate Analysis 98, 1123–1140. doi: 10.1016/j.jmva.2006.05.005
lambda()
computes the true (lower and upper) tail
coefficients for a given copula.
n <- 10000 # sample size p <- 0.01 # cut-off ## Bivariate case d <- 2 cop <- claytonCopula(2, dim = d) set.seed(271) U <- rCopula(n, copula = cop) # generate observations (unrealistic) (lam.true <- lambda(cop)) # true tail-dependence coefficients lambda (lam.C <- c(lower = fitLambda(U, p = p)[2,1], upper = fitLambda(U, p = p, lower.tail = FALSE)[2,1])) # estimate lambdas ## => pretty good U. <- pobs(U) # pseudo-observations (realistic) (lam.C. <- c(lower = fitLambda(U., p = p)[2,1], upper = fitLambda(U., p = p, lower.tail = FALSE)[2,1])) # estimate lambdas ## => The pseudo-observations do have an effect... ## Higher-dimensional case d <- 5 cop <- claytonCopula(2, dim = d) set.seed(271) U <- rCopula(n, copula = cop) # generate observations (unrealistic) (lam.true <- lambda(cop)) # true tail-dependence coefficients lambda (Lam.C <- list(lower = fitLambda(U, p = p), upper = fitLambda(U, p = p, lower.tail = FALSE))) # estimate Lambdas ## => Not too good U. <- pobs(U) # pseudo-observations (realistic) (Lam.C. <- list(lower = fitLambda(U., p = p), upper = fitLambda(U., p = p, lower.tail = FALSE))) # estimate Lambdas ## => Performance not too great here in either case
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.