Plots for Graphical GOF Test via Pairwise Rosenblatt Transforms
pairsColList()
creates a list
containing
information about colors for a given matrix of (approximate aka
“pseudo”) p-values. These colors are used in
pairsRosenblatt()
for visualizing a graphical
goodness-of-fit test based on pairwise Rosenblatt transformed data.
pairsRosenblatt(cu.u, pvalueMat=pviTest(pairwiseIndepTest(cu.u)), method = c("scatter", "QQchisq", "QQgamma", "PPchisq", "PPgamma", "none"), g1, g2, col = "B&W.contrast", colList = pairsColList(pvalueMat, col=col), main=NULL, sub = gpviString(pvalueMat, name = "pp-values"), panel = NULL, do.qqline = TRUE, keyOpt = list(title="pp-value", rug.at=pvalueMat), ...) pairsColList(P, pdiv = c(1e-04, 0.001, 0.01, 0.05, 0.1, 0.5), signif.P = 0.05, pmin0 = 1e-05, bucketCols = NULL, fgColMat = NULL, bgColMat = NULL, col = "B&W.contrast", BWcutoff = 170, bg.col = c("ETHCL", "zurich", "zurich.by.fog", "baby", "heat", "greenish"), bg.ncol.gap = floor(length(pdiv)/3), bg.col.bottom = NULL, bg.col.top = NULL, ...)
cu.u |
(n,d,d)- |
pvalueMat |
(d,d)- |
method |
Note: These methods merely just set |
g1 |
|
g2 |
|
colList |
|
main |
title. |
sub |
sub-title with a smart default containing a global (p)p-value. |
panel |
a |
do.qqline |
if |
keyOpt |
argument passed to |
... |
additional arguments passed to |
P |
d * d |
pdiv |
numeric vector of strictly increasing p-values in
(0,1) that determine the “buckets” for the background
colors of |
signif.P |
significance level (must be an element of |
pmin0 |
a Note that |
bucketCols |
|
fgColMat |
(d,d)- |
bgColMat |
(d,d)- |
col |
foreground color (defaults to "B&W.contrast" which switches
black/white according to |
BWcutoff |
number in (0, 255) for switching
foreground color if |
bg.col |
color scheme for the background colors. |
bg.ncol.gap |
number of colors left out as "gap" for
color buckets below/above |
bg.col.bottom |
|
bg.col.top |
|
Extra arguments of pairsRosenblatt()
are passed to
.pairsCond()
, these notably may include key
, true
by default, which draws a color key for the colors used as panel
background encoding (pseudo) p-values.
pairsColList()
is basically an auxiliary function to specify
the colors used in the graphical goodness-of-fit test as
conducted by pairsRosenblatt()
. The latter is described in
detail in Hofert and Mächler (2013).
See also demo(gof_graph)
.
pairsRosenblatt
: invisibly, the result of .pairsCond()
.
pairsColList
: a named list
with components
Hofert, M. and Mächler, M. (2014) A graphical goodness-of-fit test for dependence models in higher dimensions; Journal of Computational and Graphical Statistics, 23(3), 700–716. doi: 10.1080/10618600.2013.812518
pairwiseCcop()
for the tools behind the scenes.
demo(gof_graph)
for examples.
## 2-dim example {d = 2} =============== ## ## "t" Copula with 22. degrees of freedom; and (pairwise) tau = 0.5 nu <- 2.2 # degrees of freedom ## Define the multivariate distribution tCop <- ellipCopula("t", param=iTau(ellipCopula("t", df=nu), tau = 0.5), dim=2, df=nu) set.seed(19) X <- qexp(rCopula(n = 400, tCop)) ## H0 (wrongly): a Normal copula, with correct tau copH0 <- ellipCopula("normal", param=iTau(ellipCopula("normal"), tau = 0.5)) ## create array of pairwise copH0-transformed data columns cu.u <- pairwiseCcop(pobs(X), copula = copH0) ## compute pairwise matrix of p-values and corresponding colors pwIT <- pairwiseIndepTest(cu.u, N=200) # (d,d)-matrix of test results round(pmat <- pviTest(pwIT), 3) # pick out p-values ## .286 and .077 pairsRosenblatt(cu.u, pvalueMat= pmat) ### A shortened version of demo(gof_graph) ------------------------------- N <- 32 ## too small, for "testing"; realistically, use a larger one: if(FALSE) N <- 100 ## 5d Gumbel copula ########## n <- 250 # sample size d <- 5 # dimension family <- "Gumbel" # copula family tau <- 0.5 set.seed(17) ## define and sample the copula (= H0 copula), build pseudo-observations cop <- getAcop(family) th <- cop@iTau(tau) # correct parameter value copH0 <- onacopulaL(family, list(th, 1:d)) # define H0 copula U. <- pobs(rCopula(n, cop=copH0)) ## create array of pairwise copH0-transformed data columns cu.u <- pairwiseCcop(U., copula = copH0) ## compute pairwise matrix of p-values and corresponding colors pwIT <- pairwiseIndepTest(cu.u, N=N, verbose=interactive()) # (d,d)-matrix of test results round(pmat <- pviTest(pwIT), 3) # pick out p-values ## Here (with seed=1): no significant ones, smallest = 0.0603 ## Plots --------------------- ## plain (too large plot symbols here) pairsRosenblatt(cu.u, pvalueMat=pmat, pch=".") ## with title, no subtitle pwRoto <- "Pairwise Rosenblatt transformed observations" pairsRosenblatt(cu.u, pvalueMat=pmat, pch=".", main=pwRoto, sub=NULL) ## two-line title including expressions, and centered title <- list(paste(pwRoto, "to test"), substitute(italic(H[0]:C~~bold("is Gumbel with"~~tau==tau.)), list(tau.=tau))) line.main <- c(4, 1.4) pairsRosenblatt(cu.u, pvalueMat=pmat, pch=".", main=title, line.main=line.main, main.centered=TRUE) ## Q-Q plots -- can, in general, better detect outliers pairsRosenblatt(cu.u, pvalueMat=pmat, method="QQchisq", cex=0.2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.