Q-Q Plot with Rugs and Pointwise Asymptotic Confidence Intervals
A Q-Q plot (possibly) with rugs and pointwise approximate (via the Central Limit Theorem) two-sided 1-alpha confidence intervals.
qqplot2(x, qF, log = "", qqline.args = if(log=="x" || log=="y") list(untf=TRUE) else list(), rug.args = list(tcl=-0.6*par("tcl")), alpha = 0.05, CI.args = list(col="gray40"), CI.mtext = list(text=paste0("Pointwise asymptotic ", 100*(1-alpha), "% confidence intervals"), side=4, cex=0.6*par("cex.main"), adj=0, col="gray40"), main = quote(bold(italic(F)~~"Q-Q plot")), main.args = list(text=main, side=3, line=1.1, cex=par("cex.main"), font=par("font.main"), adj=par("adj"), xpd=NA), xlab = "Theoretical quantiles", ylab = "Sample quantiles", file="", width=6, height=6, ...)
x |
|
qF |
(theoretical) quantile function against which the Q-Q plot is created. |
log |
|
qqline.args |
argument |
rug.args |
argument |
alpha |
significance level. |
CI.args |
argument |
CI.mtext |
argument |
main |
title (can be an expression; use "" for no title). |
main.args |
argument |
xlab |
x axis label. |
ylab |
y axis label. |
file |
file name including the extension “.pdf”. |
width |
width parameter of |
height |
height parameter of |
... |
additional arguments passed to |
See the source code for how the confidence intervals are constructed precisely.
invisible()
.
n <- 250 df <- 7 set.seed(1) x <- rchisq(n, df=df) ## Q-Q plot against the true quantiles (of a chi^2_3 distribution) qqplot2(x, qF = function(p) qchisq(p, df=df), main = substitute(bold(italic(chi[NU])~~"Q-Q Plot"), list(NU=df))) ## in log-log scale qqplot2(x, qF = function(p) qchisq(p, df=df), log="xy", main = substitute(bold(italic(chi[NU])~~"Q-Q Plot"), list(NU=df))) ## Q-Q plot against wrong quantiles (of an Exp(1) distribution) qqplot2(x, qF=qexp, main = quote(bold(Exp(1)~~"Q-Q Plot")))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.