Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

ddalphaf.classify

Classify using Functional DD-Classifier


Description

Classifies data using the functional DD-classifier.

Usage

ddalphaf.classify(ddalphaf, objectsf, subset, ...)

## S3 method for class 'ddalphaf'
predict(object, objectsf, subset, ...)

Arguments

ddalphaf, object

Functional DD-classifier (obtained by ddalphaf.train).

objectsf

list containing lists (functions) of two vectors of equal length, named "args" and "vals": arguments sorted in ascending order and corresponding them values respectively

subset

an optional vector specifying a subset of observations to be classified.

...

additional parameters, passed to the classifier, selected with parameter classifier.type in ddalphaf.train.

Value

List containing class labels.

References

Mosler, K. and Mozharovskyi, P. (2017). Fast DD-classification of functional data. Statistical Papers 58 1055–1089.

Mozharovskyi, P. (2015). Contributions to Depth-based Classification and Computation of the Tukey Depth. Verlag Dr. Kovac (Hamburg).

See Also

ddalphaf.train to train the functional DDα-classifier.

Examples

## Not run: 
## load the Growth dataset
dataf = dataf.growth()

learn = c(head(dataf$dataf, 49), tail(dataf$dataf, 34))
labels= c(head(dataf$labels, 49), tail(dataf$labels, 34)) 
test  = tail(head(dataf$dataf, 59), 10)    # elements 50:59. 5 girls, 5 boys

c = ddalphaf.train (learn, labels, classifier.type = "ddalpha")

classified = ddalphaf.classify(c, test)

print(unlist(classified))


## End(Not run)

ddalpha

Depth-Based Classification and Calculation of Data Depth

v1.3.11
GPL-2
Authors
Oleksii Pokotylo [aut, cre], Pavlo Mozharovskyi [aut], Rainer Dyckerhoff [aut], Stanislav Nagy [aut]
Initial release
2020-01-09

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.