Kernel PCA
An S4 Class implementing Kernel PCA
Kernel PCA is a nonlinear extension of PCA using kernel methods.
fun
A function that does the embedding and returns a dimRedResult object.
stdpars
The standard parameters for the function.
Dimensionality reduction methods are S4 Classes that either be used
directly, in which case they have to be initialized and a full
list with parameters has to be handed to the @fun()
slot, or the method name be passed to the embed function and
parameters can be given to the ...
, in which case
missing parameters will be replaced by the ones in the
@stdpars
.
Kernel PCA can take the following parameters:
the number of output dimensions, defaults to 2
The kernel function, either as a function or a
character vector with the name of the kernel. Defaults to
"rbfdot"
A list with the parameters for the kernel function,
defaults to list(sigma = 0.1)
The most comprehensive collection of kernel functions can be found in
kpca
. In case the function does not take any
parameters kpar
has to be an empty list.
Wraps around kpca
, but provides additionally
forward and backward projections.
Sch\"olkopf, B., Smola, A., M\"uller, K.-R., 1998. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10, 1299-1319. https://doi.org/10.1162/089976698300017467
Other dimensionality reduction methods: AutoEncoder-class
,
DRR-class
,
DiffusionMaps-class
,
DrL-class
, FastICA-class
,
FruchtermanReingold-class
,
HLLE-class
, Isomap-class
,
KamadaKawai-class
, LLE-class
,
MDS-class
, NNMF-class
,
PCA-class
, PCA_L1-class
,
UMAP-class
,
dimRedMethod-class
,
dimRedMethodList
, nMDS-class
,
tSNE-class
## Not run: dat <- loadDataSet("3D S Curve") ## use the S4 class directly: kpca <- kPCA() emb <- kpca@fun(dat, kpca@stdpars) ## simpler, use embed(): emb2 <- embed(dat, "kPCA") plot(emb, type = "2vars") ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.