Find a threshold
Find a threshold (cut-off) to transform model predictions (probabilities, distances, or similar values) to a binary score (presence or absence).
## S4 method for signature 'ModelEvaluation' threshold(x, stat='', sensitivity=0.9, ...)
x |
A ModelEvaluation object (see |
stat |
character. To select a particular threshold (see section 'value' for possible values) |
sensitivity |
numeric between 0 and 1. For the fixed sensitivity threshold |
... |
Additional arguments. None implemented |
data.frame with the following columns:
kappa: the threshold at which kappa is highest ("max kappa")
spec_sens: the threshold at which the sum of the sensitivity (true positive rate) and specificity (true negative rate) is highest
no_omission: the highest threshold at which there is no omission
prevalence: modeled prevalence is closest to observed prevalence
equal_sens_spec: equal sensitivity and specificity
sensitivty: fixed (specified) sensitivity
Robert J. Hijmans and Diego Nieto-Lugilde
## See ?maxent for an example with real data. # this is a contrived example: # p has the predicted values for 50 known cases (locations) # with presence of the phenomenon (species) p <- rnorm(50, mean=0.7, sd=0.3) # b has the predicted values for 50 background locations (or absence) a <- rnorm(50, mean=0.4, sd=0.4) e <- evaluate(p=p, a=a) threshold(e)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.