Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

dist_bernoulli

The Bernoulli distribution


Description

[Stable]

Usage

dist_bernoulli(prob)

Arguments

prob

The probability of success on each trial, prob can be any value in [0, 1].

Details

Bernoulli distributions are used to represent events like coin flips when there is single trial that is either successful or unsuccessful. The Bernoulli distribution is a special case of the Binomial() distribution with n = 1.

We recommend reading this documentation on https://pkg.mitchelloharawild.com/distributional/, where the math will render nicely.

In the following, let X be a Bernoulli random variable with parameter p = p. Some textbooks also define q = 1 - p, or use π instead of p.

The Bernoulli probability distribution is widely used to model binary variables, such as 'failure' and 'success'. The most typical example is the flip of a coin, when p is thought as the probability of flipping a head, and q = 1 - p is the probability of flipping a tail.

Support: {0, 1}

Mean: p

Variance: p (1 - p)

Probability mass function (p.m.f):

P(X = x) = p^x (1 - p)^(1-x)

Cumulative distribution function (c.d.f):

P(X ≤ x) = (1 - p) 1_{[0, 1)}(x) + 1_{1}(x)

Moment generating function (m.g.f):

E(e^(tX)) = (1 - p) + p e^t

Examples

dist <- dist_bernoulli(prob = c(0.05, 0.5, 0.3, 0.9, 0.1))

dist
mean(dist)
variance(dist)
skewness(dist)
kurtosis(dist)

generate(dist, 10)

density(dist, 2)
density(dist, 2, log = TRUE)

cdf(dist, 4)

quantile(dist, 0.7)

distributional

Vectorised Probability Distributions

v0.2.2
GPL-3
Authors
Mitchell O'Hara-Wild [aut, cre] (<https://orcid.org/0000-0001-6729-7695>), Earo Wang [ctb] (<https://orcid.org/0000-0001-6448-5260>), Matthew Kay [ctb] (<https://orcid.org/0000-0001-9446-0419>), Alex Hayes [aut] (<https://orcid.org/0000-0002-4985-5160>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.