Simple Prior Functions
Functions for generating prior functions for use with
mcmc
, etc.
make.prior.exponential(r) make.prior.uniform(lower, upper, log=TRUE)
r |
Scalar or vector of rate parameters |
lower |
Lower bound of the parameter |
upper |
Upper bound of the parameter |
log |
Logical: should the prior be on a log basis? |
The exponential prior probability distribution has probability density
sum(r[i]*exp(-r[i]*x[i]))
where the i denotes the ith parameter. If r
is a
scalar, then the same rate is used for all parameters.
These functions each return a function that may be used as the
prior
argument to mcmc()
.
Richard G. FitzJohn
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.