Context dependent expressions
These functions return information about the "current" group or "current"
variable, so only work inside specific contexts like summarise()
and
mutate()
n()
gives the current group size.
cur_data()
gives the current data for the current group (excluding
grouping variables).
cur_data_all()
gives the current data for the current group (including
grouping variables)
cur_group()
gives the group keys, a tibble with one row and one column
for each grouping variable.
cur_group_id()
gives a unique numeric identifier for the current group.
cur_group_rows()
gives the row indices for the current group.
cur_column()
gives the name of the current column (in across()
only).
See group_data()
for equivalent functions that return values for all
groups.
n() cur_data() cur_data_all() cur_group() cur_group_id() cur_group_rows() cur_column()
If you're familiar with data.table:
cur_data()
<-> .SD
cur_group_id()
<-> .GRP
cur_group()
<-> .BY
cur_group_rows()
<-> .I
df <- tibble( g = sample(rep(letters[1:3], 1:3)), x = runif(6), y = runif(6) ) gf <- df %>% group_by(g) gf %>% summarise(n = n()) gf %>% mutate(id = cur_group_id()) gf %>% summarise(row = cur_group_rows()) gf %>% summarise(data = list(cur_group())) gf %>% summarise(data = list(cur_data())) gf %>% summarise(data = list(cur_data_all())) gf %>% mutate(across(everything(), ~ paste(cur_column(), round(.x, 2))))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.