FindHillBounds
Compute the Hill bounds based on initial parameter estimates and data.
FindHillBounds(x, y, theta, use.Hessian = FALSE, level = 0.9999)
x |
Vector of doses. |
y |
Vector of responses. |
theta |
Parameters of a 4PL model. |
use.Hessian |
Indicator of whether the Hessian matrix (TRUE) or the gradient vector is used in confidence interval computation. |
level |
Confidence level to be used in computing the Hill bounds. |
This function computes the Hill bounds based on initial parameter
estimates and data. It basically computes the confidence intervals of the
true parameters based on the variance-covariance matrix of a given initial
parameter estimates. The half of a hessian matrix is used as a
variance-covariance matrix. If matrix inversion of the variance-covariance matrix
is infeasible, a variation of the method in Wang et al. (2010) is used. The
parameter level
is only for simulation.
Data frame whose first column represents the bounds on the IC50 parameter in log 10 scale and second column represents the bounds on the slope parameter.
Hyowon An, ahwbest@gmail.com.
Higham NJ (2002). “Computing the nearest correlation matrix—a problem from finance.” IMA J. Numer. Anal., 22(3), 329–343. ISSN 0272-4979, doi: 10.1093/imanum/22.3.329, http://dx.doi.org.libproxy.lib.unc.edu/10.1093/imanum/22.3.329. Wang Y, Jadhav A, Southal N, Huang R, Nguyen DT (2010). “A grid algorithm for high throughput fitting of dose-response curve data.” Curr Chem Genomics, 4, 57–66.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.