Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

deguelin

Deguelin applied to chrysanthemum aphis


Description

Quantal assay data from an experiment where the insectide deguelin was applied to Macrosiphoniella sanborni.

Usage

data(deguelin)

Format

A data frame with 6 observations on the following 4 variables.

dose

a numeric vector of doses applied

log10dose

a numeric vector of logarithm-transformed doses

r

a numeric vector contained number of dead insects

n

a numeric vector contained the total number of insects

Details

The log-logistic model provides an inadequate fit.

The dataset is used in Nottingham and Birch (2000) to illustrate a semiparametric approach to dose-response modelling.

Source

Morgan, B. J. T. (1992) Analysis of Quantal Response Data, London: Chapman \& Hall/CRC (Table 3.9, p. 117).

References

Notttingham, Q. J. and Birch, J. B. (2000) A semiparametric approach to analysing dose-response data, Statist. Med., 19, 389–404.

Examples

## Log-logistic fit
deguelin.m1 <- drm(r/n~dose, weights=n, data=deguelin, fct=LL.2(), type="binomial")
modelFit(deguelin.m1)
summary(deguelin.m1)

## Loess fit
deguelin.m2 <- loess(r/n~dose, data=deguelin, degree=1)

## Plot of data with fits superimposed
plot(deguelin.m1, ylim=c(0.2,1))
lines(1:60, predict(deguelin.m2, newdata=data.frame(dose=1:60)), col = 2, lty = 2)

lines(1:60, 0.95*predict(deguelin.m2, 
newdata=data.frame(dose=1:60))+0.05*predict(deguelin.m1, newdata=data.frame(dose=1:60), se = FALSE),
col = 3, lty=3)

drc

Analysis of Dose-Response Curves

v3.0-1
GPL-2 | file LICENCE
Authors
Christian Ritz <ritz@bioassay.dk>, Jens C. Strebig <streibig@bioassay.dk>
Initial release
2016-08-25

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.