Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

logLik.dynrCook

Extract the log likelihood from a dynrCook Object


Description

Extract the log likelihood from a dynrCook Object

Usage

## S3 method for class 'dynrCook'
logLik(object, ...)

## S3 method for class 'dynrCook'
deviance(object, ...)

Arguments

object

The dynrCook object for which the log likelihood is desired

...

further named arguments, ignored for this method

Details

The 'df' attribute for this object is the number of freely estimated parameters. The 'nobs' attribute is the total number of rows of data, adding up the number of time points for each person.

The deviance method returns minus two times the log likelihood.

Value

In the case of logLik, an object of class logLik.

See Also

Other S3 methods coef.dynrCook

Examples

# Minimal model
require(dynr)

meas <- prep.measurement(
	values.load=matrix(c(1, 0), 1, 2),
	params.load=matrix(c('fixed', 'fixed'), 1, 2),
	state.names=c("Position","Velocity"),
	obs.names=c("y1"))

ecov <- prep.noise(
	values.latent=diag(c(0, 1), 2),
	params.latent=diag(c('fixed', 'dnoise'), 2),
	values.observed=diag(1.5, 1),
	params.observed=diag('mnoise', 1))

initial <- prep.initial(
	values.inistate=c(0, 1),
	params.inistate=c('inipos', 'fixed'),
	values.inicov=diag(1, 2),
	params.inicov=diag('fixed', 2))

dynamics <- prep.matrixDynamics(
	values.dyn=matrix(c(0, -0.1, 1, -0.2), 2, 2),
	params.dyn=matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
	isContinuousTime=TRUE)

data(Oscillator)
data <- dynr.data(Oscillator, id="id", time="times", observed="y1")

model <- dynr.model(dynamics=dynamics, measurement=meas,
	noise=ecov, initial=initial, data=data)

cook <- dynr.cook(model,
	verbose=FALSE, optimization_flag=FALSE, hessian_flag=FALSE)

# Now get the log likelihood!
logLik(cook)

dynr

Dynamic Models with Regime-Switching

v0.1.16-2
GPL-3
Authors
Lu Ou [aut], Michael D. Hunter [aut, cre] (<https://orcid.org/0000-0002-3651-6709>), Sy-Miin Chow [aut] (<https://orcid.org/0000-0003-1938-027X>), Linying Ji [aut], Meng Chen [aut], Hui-Ju Hung [aut], Jungmin Lee [aut], Yanling Li [aut], Jonathan Park [aut], Massachusetts Institute of Technology [cph], S. G. Johnson [cph], Benoit Scherrer [cph], Dieter Kraft [cph]
Initial release
2021-03-12

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.