Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

IC

Information criteria


Description

Computation of information criteria such as AIC, BIC, and cAIC based on unconditional (joint), marginal, and conditional log-likelihood

Usage

## S3 method for class 'ppar'
IC(object)

Arguments

object

Object of class ppar (from person.parameter().

Details

The joint log-likelihood is established by summation of the logarithms of the estimated solving probabilities. The marginal log-likelihood can be computed directly from the conditional log-likelihood (see vignette for details).

Value

The function IC returns an object of class ICr containing:

ICtable

Matrix containing log-likelihood values, number of parameters, AIC, BIC, and cAIC for the joint, marginal, and conditional log-likelihood.

See Also

Examples

#IC's for Rasch model
res <- RM(raschdat2)             #Rasch model
pres <- person.parameter(res)    #Person parameters
IC(pres)

#IC's for RSM
res <- RSM(rsmdat)
pres <- person.parameter(res)
IC(pres)

eRm

Extended Rasch Modeling

v1.0-2
GPL-3
Authors
Patrick Mair [cre, aut], Reinhold Hatzinger [aut], Marco J. Maier [aut], Thomas Rusch [ctb], Rudolf Debelak [ctb]
Initial release
2021-02-11

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.