Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

plotICC

ICC Plots


Description

Plot functions for visualizing the item characteristic curves

Usage

## S3 method for class 'Rm'
plotICC(object, item.subset = "all", empICC = NULL, empCI = NULL,
   mplot = NULL, xlim = c(-4, 4), ylim = c(0, 1),
   xlab = "Latent Dimension", ylab = "Probability to Solve", main=NULL,
   col = NULL, lty = 1, legpos = "left", ask = TRUE, ...)
## S3 method for class 'dRm'
plotjointICC(object, item.subset = "all", legend = TRUE,
   xlim = c(-4, 4), ylim = c(0, 1), xlab = "Latent Dimension",
   ylab = "Probability to Solve", lty = 1, legpos = "topleft",
   main="ICC plot",col=NULL,...)

Arguments

object

object of class Rm or dRm

item.subset

Subset of items to be plotted. Either a numeric vector indicating the column in X or a character vector indiciating the column name. If "all" (default), all items are plotted.

empICC

Plotting the empirical ICCs for objects of class dRm. If empICC=NULL (the default) the empirical ICC is not drawn. Otherwise, empICC must be specified as a list where the first element must be one of "raw", "loess", "tukey", "kernel". The other optional elements are smooth (numeric), type (line type for empirical ICCs, useful values are "p" (default), "l", and "b", see graphics parameter type in plot.default), pch, col, and lty, plotting ‘character’, colour and linetype (see par). See details and examples below.

empCI

Plotting confidence intervals for the the empirical ICCs. If empCI=NULL (the default) no confidence intervals are drawn. Otherwise, by specifying empCI as a list gives ‘exact’ confidence intervals for each point of the empirical ICC. The optional elements of this list are gamma, the confidence level, col, colour, and lty, line type. If empCI is specified as an empty list, the default values empCI=list(gamma=0.95,col="red",lty="dotted") will be used.

mplot

if NULL the default setting is in effect. For models of class dRm this is mplot = TRUE, i.e., the ICCs for up to 4 items are plotted in one figure. For Rm models the default is FALSE (each item in one figure) but may be set to TRUE.

xlab

Label of the x-axis.

ylab

Label of the y-axis.

xlim

Range of person parameters.

ylim

Range for probability to solve.

legend

If TRUE, legend is provided, otherwise the ICCs are labeled.

col

If not specified or NULL, line colors are determined automatically. Otherwise, a scalar or vector with appropriate color specifications may be supplied (see par).

lty

Line type.

main

Title of the plot.

legpos

Position of the legend with possible values "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". If FALSE no legend is displayed.

ask

If TRUE (the default) and the R session is interactive the user is asked for input, before a new figure is drawn. FALSE is only useful if automated figure export is in effect, e.g., when using Sweave.

...

Additional plot parameters.

Details

Empirical ICCs for objects of class dRm can be plotted using the option empICC, a list where the first element specifies the type of calculation of the empirical values. If empICC=list("raw", other specifications) relative frequencies of the positive responses are calculated for each rawscore group and plotted at the position of the corresponding person parameter. The other options use the default versions of various smoothers: "tukey" (see smooth), "loess" (see loess), and "kernel" (see ksmooth). For "loess" and "kernel" a further element, smooth, may be specified to control the span (default is 0.75) or the bandwith (default is 0.5), respectively. For example, the specification could be empirical = list("loess", smooth=0.9) or empirical = list("kernel",smooth=2). Higher values result in smoother estimates of the empirical ICCs.

The optional confidence intervals are obtained by a procedure first given in Clopper and Pearson (1934) based on the beta distribution (see binom.test).

Note

For most of the plot options see plot and par.

Author(s)

Patrick Mair, Reinhold Hatzinger

See Also

Examples

## Not run: 
# Rating scale model, ICC plot for all items
rsm.res <- RSM(rsmdat)
thresholds(rsm.res)
plotICC(rsm.res)

# now items 1 to 4 in one figure without legends
plotICC(rsm.res, item.subset = 1:4, mplot = TRUE, legpos = FALSE)

# Rasch model for items 1 to 8 from raschdat1
# empirical ICCs displaying relative frequencies (default settings)
rm8.res <- RM(raschdat1[,1:8])
plotICC(rm8.res, empICC=list("raw"))

# the same but using different plotting styles
plotICC(rm8.res, empICC=list("raw",type="b",col="blue",lty="dotted"))

# kernel-smoothed empirical ICCs using bandwidth = 2
plotICC(rm8.res, empICC = list("kernel",smooth=3))

# raw empirical ICCs with confidence intervals
# displaying only items 2,3,7,8
plotICC(rm8.res, item.subset=c(2,3,7,8), empICC=list("raw"), empCI=list())

# Joint ICC plot for items 2, 6, 8, and 15 for a Rasch model
res <- RM(raschdat1)
plotjointICC(res, item.subset = c(2,6,8,15), legpos = "left")

## End(Not run)

eRm

Extended Rasch Modeling

v1.0-2
GPL-3
Authors
Patrick Mair [cre, aut], Reinhold Hatzinger [aut], Marco J. Maier [aut], Thomas Rusch [ctb], Rudolf Debelak [ctb]
Initial release
2021-02-11

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.