Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

rsu.sep

Probability that the prevalence of disease in a population is less than or equal to a specified design prevalence


Description

Calculates the probability that the prevalence of disease in a population is less than or equal to a specified design prevalence following return of a specified number of negative test results.

Usage

rsu.sep(N, n, pstar, se.u)

Arguments

N

scalar or vector, integer representing the population size.

n

scalar or vector, integer representing the number of units sampled.

pstar

scalar or vector of the same length as n representing the desired design prevalence.

se.u

scalar or vector of the same length as n representing the unit sensitivity.

Value

A vector of the estimated probability that the prevalence of disease in the population is less than or equal to the specified design prevalence.

References

MacDiarmid S (1988). Future options for brucellosis surveillance in New Zealand beef herds. New Zealand Veterinary Journal 36: 39 - 42.

Martin S, Shoukri M, Thorburn M (1992). Evaluating the health status of herds based on tests applied to individuals. Preventive Veterinary Medicine 14: 33 - 43.

Examples

## EXAMPLE 1:
## The population size in a provincial area is 193,000. In a given two-
## week period 7764 individuals have been tested for COVID-19 using an
## approved PCR test which is believed to have a diagnostic sensitivity of 
## 0.85. All individuals have returned a negative result. What is the 
## probability that the prevalence of COVID-19 in this population is less 
## than or equal to 100 cases per 100,000?

rsu.sep(N = 193000, n = 7764, pstar = 100 / 100000, se.u = 0.85)

## If all of the 7764 individuals returned a negative test we can be more than
## 99% confident that the prevalence of COVID-19 in the province is less
## than 100 per 100,000.


## EXAMPLE 2:
## What is the probability that the prevalence of COVID-19 is less than or 
## equal to 10 cases per 100,000?

rsu.sep(N = 193000, n = 7764, pstar = 10 / 100000, se.u = 0.85)
  
## If all of the 7764 individuals returned a negative test we can be 48% 
## confident that the prevalence of COVID-19 in the province is less
## than 10 per 100,000.

epiR

Tools for the Analysis of Epidemiological Data

v2.0.19
GPL (>= 2)
Authors
Mark Stevenson <mark.stevenson1@unimelb.edu.au> and Evan Sergeant <evansergeant@gmail.com> with contributions from Telmo Nunes, Cord Heuer, Jonathon Marshall, Javier Sanchez, Ron Thornton, Jeno Reiczigel, Jim Robison-Cox, Paola Sebastiani, Peter Solymos, Kazuki Yoshida, Geoff Jones, Sarah Pirikahu, Simon Firestone, Ryan Kyle, Johann Popp, Mathew Jay and Charles Reynard.
Initial release
2021-01-12

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.