Matrix Exponential [Higham 2008]
Calculation of matrix exponential e^A with the ‘Scaling & Squaring’ method with balancing.
Implementation of Higham's Algorithm from his book (see references), Chapter 10, Algorithm 10.20.
The balancing option is an extra from Michael Stadelmann's Masters thesis.
expm.Higham08(A, balancing = TRUE)
A |
square matrix, may be a |
balancing |
logical indicating if balancing should happen (before and after scaling and squaring). |
The algorithm comprises the following steps
0.Balancing
1.Scaling
2.Padé-Approximation
3.Squaring
4.Reverse Balancing
a matrix of the same dimension as A
, the matrix exponential of A
.
Michael Stadelmann (final polish by Martin Maechler).
Higham, N.~J. (2008). Functions of Matrices: Theory and Computation; Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
Michael Stadelmann (2009). Matrixfunktionen; Analyse und Implementierung. [in German] Master's thesis and Research Report 2009-12, SAM, ETH Zurich; https://math.ethz.ch/sam/research/reports.html?year=2009, or the pdf directly at https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2009/2009-12.pdf.
For now, the other algorithms expm
.
This will change there will be one function with optional
arguments to chose the method !.
expmCond
, to compute the exponential-condition number.
## The *same* examples as in ../expm.Rd {FIXME} -- x <- matrix(c(-49, -64, 24, 31), 2, 2) expm.Higham08(x) ## ---------------------------- ## Test case 1 from Ward (1977) ## ---------------------------- test1 <- t(matrix(c( 4, 2, 0, 1, 4, 1, 1, 1, 4), 3, 3)) expm.Higham08(test1) ## [,1] [,2] [,3] ## [1,] 147.86662244637000 183.76513864636857 71.79703239999643 ## [2,] 127.78108552318250 183.76513864636877 91.88256932318409 ## [3,] 127.78108552318204 163.67960172318047 111.96810624637124 ## -- these agree with ward (1977, p608) ## ---------------------------- ## Test case 2 from Ward (1977) ## ---------------------------- test2 <- t(matrix(c( 29.87942128909879, .7815750847907159, -2.289519314033932, .7815750847907159, 25.72656945571064, 8.680737820540137, -2.289519314033932, 8.680737820540137, 34.39400925519054), 3, 3)) expm.Higham08(test2) expm.Higham08(test2, balancing = FALSE) ## [,1] [,2] [,3] ##[1,] 5496313853692405 -18231880972009100 -30475770808580196 ##[2,] -18231880972009160 60605228702221760 101291842930249376 ##[3,] -30475770808580244 101291842930249200 169294411240850880 ## -- in this case a very similar degree of accuracy. ## ---------------------------- ## Test case 3 from Ward (1977) ## ---------------------------- test3 <- t(matrix(c( -131, 19, 18, -390, 56, 54, -387, 57, 52), 3, 3)) expm.Higham08(test3) expm.Higham08(test3, balancing = FALSE) ## [,1] [,2] [,3] ##[1,] -1.5096441587713636 0.36787943910439874 0.13533528117301735 ##[2,] -5.6325707997970271 1.47151775847745725 0.40600584351567010 ##[3,] -4.9349383260294299 1.10363831731417195 0.54134112675653534 ## -- agrees to 10dp with Ward (1977), p608. ??? (FIXME) ## ---------------------------- ## Test case 4 from Ward (1977) ## ---------------------------- test4 <- structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), .Dim = c(10, 10)) E4 <- expm.Higham08(test4) Matrix(zapsmall(E4)) S4 <- as(test4, "sparseMatrix") # some R based expm() methods work for sparse: ES4 <- expm.Higham08(S4, bal=FALSE) stopifnot(all.equal(E4, unname(as.matrix(ES4)))) ## NOTE: Need much larger sparse matrices for sparse arith to be faster! ## ## example of computationally singular matrix ## m <- matrix(c(0,1,0,0), 2,2) eS <- expm.Higham08(m) # "works" (hmm ...)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.